Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2013, Article ID 769240, 9 pages
http://dx.doi.org/10.1155/2013/769240
Research Article

Towards Reviving Electroweak Baryogenesis with a Fourth Generation

Department of Physics, National Taiwan University, Taipei 10617, Taiwan

Received 22 June 2012; Accepted 27 December 2012

Academic Editor: Tao Han

Copyright © 2013 Wei-Shu Hou and Masaya Kohda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Beringer, J. F. Arguin, R. M. Barnett et al., “Review of particle physics,” Physical Review D, vol. 86, Article ID 010001, 2012. View at Publisher · View at Google Scholar
  2. A. D. Sakharov, “CP symmetry violation, C-asymmetry and baryonic asymmetry of the universe,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Pisma, vol. 5, p. 32, 1967. View at Google Scholar
  3. A. D. Sakharov, “CP symmetry violation, C-asymmetry and baryonic asymmetry of the universe,” Journal of Experimental and Theoretical Physics Letters, vol. 5, p. 24, 1967. View at Google Scholar
  4. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On anomalous electroweak baryon-number non-conservation in the early universe,” Physics Letters B, vol. 155, no. 1-2, pp. 36–42, 1985. View at Google Scholar · View at Scopus
  5. M. Kobayashi and T. Maskawa, “CP-Violation in the renormalizable theory of weak interaction,” Progress of Theoretical Physics, vol. 49, no. 2, pp. 652–657, 1973. View at Google Scholar
  6. R. Barate, R. Bruneliere, I. de Bonis et al., “Search for the standard model higgs boson at LEP,” Physics Letters B, vol. 565, pp. 61–75, 2003. View at Google Scholar
  7. G. Aad, T. Abajyan, B. Abbott et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Physics Letters B, vol. 716, no. 1, pp. 1–29, 2012. View at Publisher · View at Google Scholar
  8. S. Chatrchyan, V. Khachatryan, A. M. Sirunyan et al., “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Physics Letters B, vol. 716, no. 1, pp. 30–61, 2012. View at Publisher · View at Google Scholar
  9. D. E. Morrissey and M. J. Ramsey-Musolf, “Electroweak baryogenesis,” New Journal of Physics, vol. 14, Article ID 125003, 2012. View at Publisher · View at Google Scholar
  10. H. Murayama, V. Rentala, J. Shu, and T. T. Yanagida, “Saving fourth generation and baryon number by living long,” Physics Letters B, vol. 705, no. 3, pp. 208–211, 2011. View at Publisher · View at Google Scholar
  11. W. S. Hou, “Source of CP violation for baryon asymmetry of the universe,” Chinese Journal of Physics, vol. 47, p. 134, 2009. View at Google Scholar
  12. M. E. Shaposhnikov, “Possible appearance of the baryon asymmetry of the universe in an electroweak theory,” Jounal of Experimental and Theoretical Physics Letters, vol. 44, no. 8, pp. 465–468, 1986. View at Google Scholar
  13. M.E. Shaposhnikov, “Baryon asymmetry of the universe in standard electroweak theory,” Nuclear Physics B, vol. 287, pp. 757–775, 1987. View at Publisher · View at Google Scholar
  14. R. Fok and G. D. Kribs, “Four generations, the electroweak phase transition, and supersymmetry,” Physical Review D, vol. 78, no. 7, Article ID 075023, 2008. View at Publisher · View at Google Scholar
  15. S. Chatrchyan, V. Khachatryan, A. M. Sirunyan et al., “Search for heavy, top-like quarkpair production in the dilepton final state in pp collisions at sqrt(s) = 7 TeV,” Physics Letters B, vol. 716, pp. 103–121, 2012. View at Google Scholar
  16. S. Chatrchyan, V. Khachatryan, A. M. Sirunyan et al., “Search for heavy bottom-like quarks in 4.9 fb−1 of pp collisions at s=7 TeV,” Journal of High Energy Physics, vol. 1205, p. 123, 2012. View at Publisher · View at Google Scholar
  17. M. S. Chanowitz, M. A. Furman, and I. Hinchliffe, “Weak interactions of ultra heavy fermions,” Physics Letters B, vol. 78, no. 2-3, pp. 285–289, 1978. View at Google Scholar · View at Scopus
  18. S. W. Ham, S. K. Oh, and D. Son, “Electroweak phase transition in the minimal supersymmetric standard model with four generations,” Physical Review D, vol. 71, Article ID 015001, 6 pages, 2005. View at Publisher · View at Google Scholar
  19. Y. Kikukawa, M. Kohda, and J. Yasuda, “The strongly coupled fourth family and a first-order electroweak phase transition. I—quark sector,” Progress of Theoretical Physics, vol. 122, no. 2, pp. 401–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Jarlskog, “Flavor projection operators and applications to CP violation with any number of families,” Physical Review D, vol. 36, no. 7, pp. 2128–2136, 1987. View at Publisher · View at Google Scholar · View at Scopus
  21. W. S. Hou, Y. Y. Mao, and C. H. Shen, “Leading effect of CP violation with four generations,” Physical Review D, vol. 82, Article ID 036005, 10 pages, 2010. View at Publisher · View at Google Scholar
  22. G. R. Farrar and M. E. Shaposhnikov, “Baryon asymmetry of the universe in the minimal standard model,” Physical Review Letters, vol. 70, no. 19, pp. 2833–2836, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. G. R. Farrar and M. E. Shaposhnikov, “Erratum ‘Baryon asymmetry of the universe in the minimal standard model’,” Physical Review Letters, vol. 71, p. 210, 1993. View at Google Scholar
  24. G. R. Farrar and M. E. Shaposhnikov, “Baryon asymmetry of the universe in the standard electroweak theory,” Physical Review D, vol. 50, no. 2, pp. 774–818, 1994. View at Publisher · View at Google Scholar
  25. G. R. Farrar and M. E. Shaposhnikov, “Note added to ‘Baryon asymmetry of the universe in the standard model’,” http://arxiv.org/abs/hep-ph/9406387.
  26. M. B. Gavela, P. Hernandez, J. Orloff, and O. Pene, “Standard model Cp-violation and baryon asymmetry,” Modern Physics Letters A, vol. 9, no. 9, p. 795, 1994. View at Publisher · View at Google Scholar
  27. M. B. Gavela, M. Lozano, J. Orloff, and O. Pène, “Standard model CP-violation and baryon asymmetry (I). Zero temperature,” Nuclear Physics B, vol. 430, no. 2, pp. 345–381, 1994. View at Google Scholar · View at Scopus
  28. M. B. Gavela, P. Hernandez, J. Orloff, O. Pène, and C. Quimbay, “Standard model CP-violation and baryon asymmetry (II). Finite temperature,” Nuclear Physics B, vol. 430, no. 2, pp. 382–426, 1994. View at Google Scholar · View at Scopus
  29. P. Huet and E. Sather, “Electroweak baryogenesis and standard model CP violation,” Physical Review D, vol. 51, no. 2, pp. 379–394, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Braaten and R. D. Pisarski, “Calculation of the quark damping rate in hot QCD,” Physical Review D, vol. 46, no. 4, pp. 1829–1834, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. W. S. Hou, M. Kohda, and F. Xu, “Measuring the fourth-generation b→s quadrangle at the LHC,” Physical Review D, vol. 84, no. 9, Article ID 094027, 7 pages, 2011. View at Publisher · View at Google Scholar
  32. W. S. Hou, M. Kohda, and F. Xu, “Hints for a low Bsμ+μ rate and the fourth generation,” Physical Review D, vol. 85, no. 9, Article ID 097502, 5 pages, 2012. View at Publisher · View at Google Scholar
  33. L. Dolan and R. Jackiw, “Symmetry behavior at finite temperature,” Physical Review D, vol. 9, no. 12, pp. 3320–3341, 1974. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Weinberg, “Gauge and global symmetries at high temperature,” Physical Review D, vol. 9, no. 12, pp. 3357–3378, 1974. View at Publisher · View at Google Scholar · View at Scopus
  35. G. W. Anderson and L. J. Hall, “Electroweak phase transition and baryogenesis,” Physical Review D, vol. 45, no. 8, pp. 2685–2698, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Quiros, “Finite temperature fieldtheory and phase transitions,” http://arxiv.org/abs/hep-ph/9901312.
  37. M. Gürtler, E. M. Ilgenfritz, and A. Schiller, “Where the electroweak phase transition ends,” Physical Review D, vol. 56, no. 7, pp. 3888–3895, 1997. View at Google Scholar · View at Scopus
  38. M. Laine and K. Rummukainen, “What's new with the electroweak phase transition?” Nuclear Physics B, vol. 73, no. 1–3, pp. 180–185, 1999. View at Google Scholar · View at Scopus
  39. F. Csikor, Z. Fodor, and J. Heitger, “End point of the hot electroweak phase transition,” Physical Review Letters, vol. 82, no. 1, pp. 21–24, 1999. View at Google Scholar · View at Scopus
  40. Y. Aoki, F. Csikor, Z. Fodor, and A. Ukawa, “The end point of the first-order phase transition of the SU(2) gauge-Higgs model on a 4-dimensional isotropic lattice,” Physical Review D, vol. 60, no. 1, Article ID 013001, pp. 1–8, 1999. View at Google Scholar · View at Scopus
  41. P. Q. Hung and C. Xiong, “Dynamical electroweak symmetry breaking with a heavy fourth generation,” Nuclear Physics B, vol. 848, no. 2, pp. 288–302, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  42. K. Ishiwata and M. B. Wise, “Fourth generation bound states,” Physical Review D, vol. 83, no. 7, Article ID 074015, 8 pages, 2011. View at Publisher · View at Google Scholar
  43. T. Enkhbat, W. S. Hou, and H. Yokoya, “Early LHC phenomenology of Yukawa-bound heavy QQ¯ mesons,” Physical Review D, vol. 84, no. 9, Article ID 094013, 14 pages, 2011. View at Publisher · View at Google Scholar
  44. W. S. Hou, “Some unfinished thoughts on strong yukawa couplings,” Chinese Journal of Physics, vol. 50, p. 375, 2012. View at Google Scholar
  45. Y. Mimura, W. S. Hou, and H. Kohyama, “Bootstrap dynamical symmetry breaking with new heavy chiral quarks,” http://arxiv.org/abs/1206.6063.
  46. D. Elander and M. Piai, “The decay constant of the holographic techni-dilaton and the 125 GeV boson,” Nuclear Physics B, vol. 867, no. 3, pp. 779–809, 2013. View at Google Scholar
  47. B. Grinstein and M. Trott, “Electroweak baryogenesis with a pseudo-Goldstone Higgs boson,” Physical Review D, vol. 78, no. 7, Article ID 075022, 28 pages, 2008. View at Publisher · View at Google Scholar