Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2015 (2015), Article ID 879871, 13 pages
http://dx.doi.org/10.1155/2015/879871
Review Article

Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE

D. R. Artusa,1,2 F. T. Avignone III,1 O. Azzolini,3 M. Balata,2 T. I. Banks,2,4,5 G. Bari,6 J. Beeman,7 F. Bellini,8,9 A. Bersani,10 M. Biassoni,11,12 C. Brofferio,11,12 C. Bucci,2 X. Z. Cai,13 A. Camacho,3 L. Canonica,2 X. G. Cao,13 S. Capelli,11,12 L. Carbone,12 L. Cardani,8,9 M. Carrettoni,11,12 N. Casali,2 D. Chiesa,11,12 N. Chott,1 M. Clemenza,11,12 S. Copello,14 C. Cosmelli,8,9 O. Cremonesi,12 R. J. Creswick,1 I. Dafinei,9 A. Dally,15 V. Datskov,12 A. De Biasi,3 M. M. Deninno,6 S. Di Domizio,10,14 M. L. di Vacri,2 L. Ejzak,15 D. Q. Fang,13 H. A. Farach,1 M. Faverzani,11,12 G. Fernandes,10,14 E. Ferri,11,12 F. Ferroni,8,9 E. Fiorini,11,12 M. A. Franceschi,16 S. J. Freedman,4,5 B. K. Fujikawa,5 A. Giachero,11,12 L. Gironi,11,12 A. Giuliani,17 J. Goett,2 P. Gorla,2 C. Gotti,11,12 T. D. Gutierrez,18 E. E. Haller,7,19 K. Han,5 K. M. Heeger,20 R. Hennings-Yeomans,4 H. Z. Huang,21 R. Kadel,22 K. Kazkaz,23 G. Keppel,3 Yu. G. Kolomensky,4,22 Y. L. Li,13 C. Ligi,16 X. Liu,21 Y. G. Ma,13 C. Maiano,11,12 M. Maino,11,12 M. Martinez,24 R. H. Maruyama,20 Y. Mei,5 N. Moggi,6 S. Morganti,9 T. Napolitano,16 S. Nisi,2 C. Nones,25 E. B. Norman,23,26 A. Nucciotti,11,12 T. O’Donnell,4 F. Orio,9 D. Orlandi,2 J. L. Ouellet,4,5 M. Pallavicini,10,14 V. Palmieri,3 L. Pattavina,2 M. Pavan,11,12 M. Pedretti,23 G. Pessina,12 V. Pettinacci,9 G. Piperno,8,9 C. Pira,3 S. Pirro,2 E. Previtali,12 V. Rampazzo,3 C. Rosenfeld,1 C. Rusconi,12 E. Sala,11,12 S. Sangiorgio,23 N. D. Scielzo,23 M. Sisti,11,12 A. R. Smith,5 L. Taffarello,27 M. Tenconi,17 F. Terranova,11,12 W. D. Tian,13 C. Tomei,9 S. Trentalange,21 G. Ventura,28,29 M. Vignati,9 B. S. Wang,23,26 H. W. Wang,13 L. Wielgus,15 J. Wilson,1 L. A. Winslow,21 T. Wise,15,20 A. Woodcraft,30 L. Zanotti,11,12 C. Zarra,2 B. X. Zhu,21 and S. Zucchelli6,31

1Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA
2INFN, Laboratori Nazionali del Gran Sasso, Assergi, 67010 L’Aquila, Italy
3INFN, Laboratori Nazionali di Legnaro, Legnaro, 35020 Padova, Italy
4Department of Physics, University of California, Berkeley, CA 94720, USA
5Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
6INFN, Sezione di Bologna, 40127 Bologna, Italy
7Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
8Dipartimento di Fisica, Sapienza Università di Roma, 00185 Roma, Italy
9INFN, Sezione di Roma, 00185 Roma, Italy
10INFN, Sezione di Genova, 16146 Genova, Italy
11Dipartimento di Fisica, Università di Milano-Bicocca, 20126 Milano, Italy
12INFN, Sezione di Milano Bicocca, 20126 Milano, Italy
13Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
14Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy
15Department of Physics, University of Wisconsin, Madison, WI 53706, USA
16INFN, Laboratori Nazionali di Frascati, Frascati, 00044 Roma, Italy
17Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Orsay Campus, 91405 Orsay, France
18Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
19Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
20Department of Physics, Yale University, New Haven, CT 06520, USA
21Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
22Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
23Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
24Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, 50009 Zaragoza, Spain
25Service de Physique des Particules, CEA/Saclay, 91191 Gif-sur-Yvette, France
26Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
27INFN, Sezione di Padova, 35131 Padova, Italy
28Dipartimento di Fisica, Università di Firenze, 50125 Firenze, Italy
29INFN, Sezione di Firenze, 50125 Firenze, Italy
30SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
31Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy

Received 25 February 2014; Accepted 30 April 2014

Academic Editor: Abhijit Samanta

Copyright © 2015 D. R. Artusa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

Linked References

  1. J. Beringer, J. F. Arguin, R. M. Barnett et al., “Review of particle physics,” Physical Review D, vol. 86, Article ID 010001, 2012. View at Publisher · View at Google Scholar
  2. G. Bellini, L. Ludhova, G. Ranucci, and F. L. Villante, “Neutrino oscillations,” Advances in High Energy Physics, vol. 2014, Article ID 191960, 28 pages, 2014. View at Publisher · View at Google Scholar
  3. E. Majorana, “Teoria simmetrica dell’elettrone e del positrone,” Il Nuovo Cimento, vol. 14, no. 4, pp. 171–184, 1937. View at Publisher · View at Google Scholar · View at Scopus
  4. F. T. Avignone, S. R. Elliott, and J. Engel, “Double beta decay, Majorana neutrinos, and neutrino mass,” Reviews of Modern Physics, vol. 80, p. 481, 2008. View at Publisher · View at Google Scholar
  5. S. M. Bilenky and C. Giunti, “Neutrinoless double-beta decay. A brief review,” Modern Physics Letters A, vol. 27, Article ID 1230015, 2012. View at Google Scholar
  6. H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, A. Dietz, and O. Chkvorets, “Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso 1990–2003,” Physics Letters B: Nuclear, Elementary Particle and High-Energy Physics, vol. 586, no. 3-4, pp. 198–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, “The evidence for the observation of 0νββ decay: the identification of 0νββ events from the full spectra,” Modern Physics Letters A, vol. 21, no. 20, pp. 1547–1566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Auger, D. J. Auty, P. S. Barbeau et al., “Search for neutrinoless double-beta decay in 136Xe with EXO-200,” Physical Review Letters, vol. 109, Article ID 032505, 2012. View at Publisher · View at Google Scholar
  9. A. Gando, Y. Gando, and H. Hanakago, “Limit on Neutrinoless ββ decay of 136Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76Ge,” Physical Review Letters, vol. 110, Article ID 062502, 2013. View at Publisher · View at Google Scholar
  10. M. Agostini, M. Allardt, E. Andreotti et al., “Results on neutrinoless double-β76Ge decay of from phase I of the GERDA experiment,” Physical Review Letters, vol. 111, Article ID 122503, 2013. View at Google Scholar
  11. C. Arnaboldi, F. T. Avignone III, and J. Beeman, “CUORE: a cryogenic underground observatory for rare events,” Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 518, no. 3, pp. 775–798, 2004. View at Publisher · View at Google Scholar
  12. R. Ardito, C. Arnaboldi, D. R. Artusa, and CUORE Collaboration, “CUORE: a cryogenic underground observatory for rare events,” http://arxiv.org/abs/hepex/0501010.
  13. E. Andreotti, C. Arnaboldi, F. T. Avignone et al., “130Te neutrinoless double-beta decay with CUORICINO,” Astroparticle Physics, vol. 34, no. 11, pp. 822–831, 2011. View at Publisher · View at Google Scholar
  14. M. Redshaw, B. J. Mount, E. G. Myers, and F. T. Avignone III, “Masses of 130Te, 130Xe and double-beta-decay Q-value of 130Te,” Physical Review Letters, vol. 102, no. 21, Article ID 212502, 2009. View at Google Scholar
  15. N. D. Scielzo, S. Caldwell, and G. Savard, “Double-β decay Q values of 130Te, 128Te, and 120Te,” Physical Review C, vol. 80, Article ID 025501, 2009. View at Publisher · View at Google Scholar
  16. S. Rahaman, V.-V. Elomaa, T. Eronen et al., “Double-beta decay Q values of 116Cd and 130Te,” Physics Letters B, vol. 703, no. 4, pp. 412–416, 2011. View at Publisher · View at Google Scholar
  17. M. A. Fehr, M. Rehkamper, and A. N. Halliday, “Application of MC-ICPMS to the precise determination of tellurium isotope compositions in chondrites, iron meteorites and sulfides,” International Journal of Mass Spectrometry, vol. 232, no. 1, pp. 83–94, 2004. View at Publisher · View at Google Scholar
  18. C. Arnaboldi, “Production of high purity TeO2 single crystals for the study of neutrinoless double beta decay,” Journal of Crystal Growth, vol. 312, p. 2999, 2010. View at Google Scholar
  19. E. E. Haller, “Advanced far-infrared detectors,” Infrared Physics & Technology, vol. 35, pp. 127–146, 1994. View at Publisher · View at Google Scholar
  20. D. McCammon, “Semiconductor thermistors,” Applied Physics, vol. 99, pp. 35–61, 2005. View at Google Scholar
  21. E. Andreotti, C. Brofferio, L. Foggetta et al., “Production, characterization, and selection of the heating elements for the response stabilization of the CUORE bolometers,” Nuclear Instruments and Methods in Physics Research A, vol. 664, pp. 161–170, 2012. View at Publisher · View at Google Scholar
  22. A. Alessandrello, C. Brofferio, C. Bucci et al., “Methods for response stabilization in bolome-ters for rare decays,” Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 412, pp. 454–464, 1998. View at Google Scholar
  23. F. Alessandria, R. Ardito, D. R. Artusa (CUORE Collaboration), and CUORE Collaboration, “Sensitivity and discovery potential of CUORE to neutrinoless double-beta decay,” Submitted, http://arxiv.org/abs/1109.0494.
  24. D. R. Artusa, F. T. Avignone III, O. Azzolini et al., “Initial performance of the CUORE-0 experiment,” The European Physical Journal C, vol. 74, article 2956, 2014. View at Publisher · View at Google Scholar
  25. F. Alessandria, E. Andreotti, and R. Ardito, “CUORE crystal validation runs: results on radioactive contamination and extrapolation to CUORE background,” Astroparticle Physics, vol. 35, pp. 839–849, 2012. View at Publisher · View at Google Scholar
  26. M. Ambrosio, R. Antolini, G. Auriemma et al., “Vertical muon intensity measured with MACRO at the Gran Sasso laboratory,” Physical Review D, vol. 52, no. 7, pp. 3793–3802, 1995. View at Publisher · View at Google Scholar
  27. D. Mei and A. Hime, “Muon-induced background study for underground laboratories,” Physical Review D, vol. 73, no. 5, Article ID 053004, 2006. View at Publisher · View at Google Scholar
  28. M. Selvi, “Analysis of the seasonal modulation of the cosmic muon flux in the LVD detector during 2001–2008,” in Proceedings of the 31st International Cosmic Ray Conference (ICRC ’09), 2009.
  29. G. Bellini, J. Benziger, D. Bick et al., “Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth,” Journal of Cosmology and Astroparticle Physics, vol. 2012, article 015, 2012. View at Publisher · View at Google Scholar
  30. D. R. Artusa et al., “Projected background budget of the CUORE experiment,” to be submitted.
  31. F. Alessandria, R. Ardito, D. R. Artusa et al., “Validation of techniques to mitigate copper surface contamination in CUORE,” Astroparticle Physics, vol. 45, pp. 13–22, 2013. View at Publisher · View at Google Scholar
  32. A. Alessandrello, C. Arpesella, C. Brofferio et al., “Measurements of internal radioactive contamination in samples of Roman lead to be used in experiments on rare events,” Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, vol. 142, no. 1-2, pp. 163–172, 1998. View at Publisher · View at Google Scholar
  33. E. Andreotti, C. Arnaboldi, F. T. Avignone III et al., “Muon-induced backgrounds in the CUORICINO experiment,” Astroparticle Physics, vol. 34, no. 1, pp. 18–24, 2010. View at Publisher · View at Google Scholar
  34. F. Bellini, C. Bucci, S. Capelli et al., “Monte Carlo evaluation of the external gamma, neutron and muon induced background sources in the CUORE experiment,” Astroparticle Physics, vol. 33, no. 3, pp. 169–174, 2010. View at Publisher · View at Google Scholar
  35. D. R. Artusa et al., “Validation of parylene coating technique to suppress copper surface contamination in CUORE,” to be submitted.
  36. C. Arnaboldi, D. R. Artusa, and F. T. Avignone III, “Results from a search for the 0νββ-decay of 130Te,” Physical Review C, vol. 78, Article ID 035502, 2008. View at Publisher · View at Google Scholar
  37. C. Arnaboldi, C. Bucci, S. Capelli et al., “The front-end readout for CUORICINO, an array of macro-bolometers and MIBETA, an array of μ-bolometers,” Nuclear Instruments and Methods in Physics Research A, vol. 520, no. 1–3, pp. 578–580, 2004. View at Publisher · View at Google Scholar
  38. C. Arnaboldi, M. Cariello, S. Di Domizio, A. Giachero, and G. Pessina, “A programmable multichannel antialiasing filter for the CUORE experiment,” Nuclear Instruments and Methods in Physics Research A, vol. 617, pp. 327–328, 2010. View at Publisher · View at Google Scholar
  39. E. Gatti and P. F. Manfredi, “Processing the signals from solid-state detectors in elementary-particle physics,” La Rivista del Nuovo Cimento, vol. 9, no. 1, pp. 1–146, 1986. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Clemenza, C. Maiano, L. Pattavina, and E. Previtali, “Radon-induced surface contaminations in low background experiments,” The European Physical Journal C, vol. 71, article 1805, 2011. View at Publisher · View at Google Scholar
  41. A. Nucciotti, F. Alessandria, M. Ameri et al., “Status of the cryogen-free cryogenic system for the CUORE experiment,” Journal of Low Temperature Physics, vol. 167, no. 3-4, pp. 528–534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Ferri, D. Bagliani, M. Biassotti et al., “Preliminary results of the MARE experiment,” Journal of Low Temperature Physics, vol. 176, no. 5-6, pp. 885–890, 2014. View at Publisher · View at Google Scholar
  43. K. Chodorow and M. Dirolf, MongoDB—The Definitive Guide: Powerful and Scalable Data Storage, O’Reilly, 2010.
  44. R. Brun and F. Rademakers, “ROOT: an object oriented data analysis framework,” Nuclear Instruments and Methods in Physics Research A, vol. 389, no. 1-2, pp. 81–86, 1997. View at Publisher · View at Google Scholar
  45. C. Mancini-Terracciano and M. Vignati, “Noise correlation and decorrelation in arrays of bolometric detectors,” Journal of Instrumentation, vol. 7, Article ID P06013, 2012. View at Publisher · View at Google Scholar