Table of Contents Author Guidelines Submit a Manuscript
Advances in High Energy Physics
Volume 2015 (2015), Article ID 960345, 14 pages
http://dx.doi.org/10.1155/2015/960345
Research Article

Dyons, Superstrings, and Wormholes: Exact Solutions of the Non-Abelian Dirac-Born-Infeld Action

Department of Physics, University of North Carolina at Wilmington, Wilmington, NC 28403-5606, USA

Received 14 April 2015; Accepted 16 July 2015

Academic Editor: Anastasios Petkou

Copyright © 2015 Edward A. Olszewski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

Abstract

We construct dyon solutions on coincident -branes, obtained by applying -duality transformations to type I superstring theory in 10 dimensions. These solutions, which are exact, are obtained from an action comprising the non-Abelian Dirac-Born-Infeld action and a Wess-Zumino-like action. When one spatial dimension of the -branes is taken to be vanishingly small, the dyons are analogous to the ’t Hooft/Polyakov monopole residing in a -dimensional spacetime, where the component of the Yang-Mills potential transforming as a Lorentz scalar is reinterpreted as a Higgs boson transforming in the adjoint representation of the gauge group. Applying a -duality transformation to the vanishingly small spatial dimension, we obtain a collection of -branes, not all of which are coincident. Two of the -branes, distinct from the others, acquire intrinsic, finite curvature and are connected by a wormhole. The dyons possess electric and magnetic charges whose values on each -brane are the negative of one another. The gravitational effects, which arise after the -duality transformation, occur despite the fact that the action of the system does not explicitly include the gravitational interaction. These solutions provide a simple example of the subtle relationship between the Yang-Mills and gravitational interactions, that is, gauge/gravity duality.