Research Article  Open Access
A. Ozansoy, V. Arı, V. Çetinkaya, "Search for Excited Spin3/2 Neutrinos at LHeC", Advances in High Energy Physics, vol. 2016, Article ID 1739027, 10 pages, 2016. https://doi.org/10.1155/2016/1739027
Search for Excited Spin3/2 Neutrinos at LHeC
Abstract
We study the potential of the next collider, namely, LHeC, with two options TeV and TeV, to search for excited spin1/2 and spin3/2 neutrinos. We calculate the single production crosssection of excited spin1/2 and spin3/2 neutrinos according to their effective currents describing their interactions between gauge bosons and SM leptons. We choose the decay mode of excited neutrinos and decay mode of boson for the analysis. We put some kinematical cuts for the final state detectable particles and plot the invariant mass distributions for signal and the corresponding backgrounds. In order to obtain accessible limits for excited neutrino couplings, we show the and contour plots for excited spin1/2 and excited spin3/2 neutrinos, respectively.
1. Introduction
The Standard Model (SM) of the particle physics agrees with experimental results from the operating colliders. The first run of the Large Hadron Collider (LHC) brought the expected Higgs boson discovery, so a crucial part of the SM has been completed. But there is still no satisfying explanation of the threefamily structure of leptons and quarks and their mass hierarchy. An attractive explanation is lepton and quark compositeness [1–3]. In composite models, known leptons and quarks have a substructure characterized by an energy scale called the compositeness scale, A natural consequence of compositeness is the occurrence of excited states [4–7]. Phenomenologically, an excited lepton can be regarded as a heavy lepton sharing the same leptonic quantum number with the corresponding SM lepton. If leptons present composite structures, they can be considered as spin1/2 bound states containing three spin1/2 or spin1/2 and spin0 subparticles. Bound states of spin3/2 leptons are also possible with three spin1/2 [1–3] or spin1/2 and spin1 subparticles in the framework of composite models [8]. The motivations for spin3/2 particles come from two different scenarios; spin3/2 leptons appear in composite models [9–13] and a spin3/2 gravitino is the superpartner of graviton in supergravity [14]. Theories beyond the Standard Model that contain exotic particles are discussed in [15–19].
Both excited spin1/2 and spin3/2 neutrinos can be produced at future high energy lepton, hadron, and leptonhadron colliders. Elaborate studies on excited spin1/2 neutrinos can be found in [20–30]. Also, one can find excited spin1/2 neutrino production by ultrahigh energy neutrinos in [31] and the impact of excited spin1/2 neutrinos on process in [32].
The mass limit for excited spin1/2 neutrinos obtained from their pair production ( process) by L3 Collaboration at GeV, assuming , where and are the new couplings determined by the composite dynamics, is GeV [33]. Assuming and , for single production of excited spin1/2 neutrino in collisions taking into account all the decay channels, the H1 Collaboration sets the exclusion limit for the mass range of excited neutrino GeV at 95% C.L. [34]. Recently, a search was performed by the ATLAS Collaboration taking into account pair production of excited spin1/2 neutrinos either through contact or gaugemediated interactions and their decay proceeds via the same mechanism. Considering events with at least three charged leptons with , with and with an integrated luminosity of of collisions at TeV, a lower mass limit of 1.6 TeV is obtained for every excited spin1/2 neutrino flavour [35].
Excited spin3/2 neutrinos are not as well studied in the litterateur as the spin1/2. An investigation of the production and decay processes of the single heavy spin3/2 neutrino was performed in [36, 37]. A study of the potential of future high energy linear colliders to probe excited spin3/2 neutrino signals in different decay modes by considering three phenomenological currents taking into account the corresponding background was done in [8].
Studies are ongoing for the development of a new collider, the Large Hadron Electron Collider (LHeC), with an electron beam of 60 GeV, to possibly 140 GeV, and a proton beam of the LHC [38–41] or in the future the Future Circular Collider leptonhadron collider (FCCeh) [42, 43]. The LHeC is the highest energy leptonhadron collider under design and is considered as a linacring collider. Linacring type colliders were proposed in [44] and the physics potentials and advantages of these type leptonhadron colliders are discussed in [45, 46]. Latest results for excited neutrino searches coming from the first collider HERA have showed that colliders are so competitive to and colliders and very important for the investigation of beyond SM physics [34, 38–41]. With the design luminosity of the LHeC is intended to exceed the HERA luminosity by a factor of ~100. So it would be a major opportunity to push forward the investigations done in the LHC.
This work is a continuation of the previous works on excited neutrinos [8, 25]. In this work, in Section 2 we introduce the phenomenological currents for excited neutrinos and give their decay widths. In Section 3, we consider single production of excited spin1/2 and spin3/2 neutrinos at colliders. We take into account the signal in decay mode of excited neutrinos as well as corresponding backgrounds at LHeC with TeV and TeV. We plot the invariant mass distributions for single production of excited neutrinos with spin1/2 and spin3/2. Last, we plot the contour plots for the excited neutrino couplings to obtain the exclusion limits. Investigation on excited fermions with spin1/2 takes an important part in the physics program of LHeC [38, 39]. Although the latest limit for excited spin1/2 neutrinos set by the ATLAS experiment is high, it is important to examine the excited neutrinos with different spins at high energy leptonhadron colliders. This work is the only dedicated work which gives the comparative results for both excited spin1/2 and spin3/2 neutrinos to comprehend the potential of next collider.
2. Physical Preliminaries
An excited spin1/2 neutrino is the lowest radial and orbital excitation according to the classification by quantum numbers. Interactions between excited spin1/2 neutrino and ordinary leptons are of the magnetic transition type [47–49]. The effective current for the interaction between an excited spin1/2 neutrino, a gauge boson (), and the SM lepton is given bywhere is the new physics scale; is electromagnetic coupling constant with ; , and are the four momentum of the SM lepton, excited spin1/2 neutrino, and the gauge boson, respectively. is the new electroweak coupling parameter corresponding to the gauge boson and with being the Dirac matrices. An excited neutrino has three possible decay modes, each one of which is related to a vector boson , and . These decay modes are radiative decay , neutral weak decay , and charged weak decay . Neglecting SM lepton mass we find the decay width of the excited spin1/2 neutrino aswhere , , and ; is the weak mixing angle and is the mass of the gauge boson. The couplings and are the scaling factors for the gauge couplings of and . Unless , the electromagnetic interaction of excited neutrino and SM neutrino exists. Branching ratios of excited spin1/2 neutrino for two choices and are presented in Table 1. One may note that for the choice the branching ratio for the channel is ≈60%. Hence, to choose the mode for the analysis is more feasible.

The two phenomenological currents for the interactions between an excited spin3/2 neutrino, a gauge boson (), and the SM lepton are given bywhere represents the RaritaSchwinger vectorspinor [50].
Decay widths of excited spin3/2 neutrinos for the decay mode for the two currents are given byand for the neutral and charged weak decay modes ( and ), they are given aswhere , , and . Branching ratios and total decay width of excited spin3/2 neutrinos with and are given in Tables 2 and 3, respectively. Also, total decay width of excited neutrinos as a function of their mass () is shown in Figure 1.


3. Single Production at Collider
The excited spin1/2 and spin3/2 neutrinos can be produced singly at future colliders via channel exchange. In our calculations we use the program CALCHEP [51–53]. The Feynman diagrams for the subprocesses and are shown in Figure 2.
Neglecting SM quark masses, the explicit formulas for the differential crosssection of the subprocesses and for the two phenomenological spin3/2 currents and arewhere is the CKM matrix element, is the Mandelstam variable, and is the square of centerofmass energy of the collider. Also, differential crosssection expression for the excited spin1/2 neutrino is
Total crosssection as a function of excited neutrino mass is shown in Figure 3 for the centerofmass energies TeV and TeV.
In our analysis we chose the mode because of the high branching ratio of the charged current decay channel. and decay modes will have larger uncertainty because of the missing transverse momentum () due to the neutrino in the final state. We consider the process and put some kinematical cuts for the final state detectable particles. We deal with the subprocess and impose the acceptance cuts
Feynman diagrams for the SM process are presented in Figure 4. The main background process that gives the same final state as excited neutrino signal is multijet neutral current deep inelastic scattering (NC DIS) events. After applying these cuts we obtained the SM background crosssection for the process as pb for TeV and pb for TeV. In order to discriminate the excited neutrino signal we plot the invariant mass distributions for the system for the masses GeV at TeV and for the masses GeV at TeV in Figures 5 and 6, respectively.
We plot the rate of as a function of excited neutrino mass in Figure 7 to examine the contribution of excited neutrinos to the process and also to investigate the separation of different excited neutrino models. Here corresponds the crosssection calculated for the presence of excited neutrino (signal) and Standard Model (background) both, and is the SM (background) crosssection. In these figures, the separation of spin1/2, spin3/2 with and spin3/2 with excited neutrinos can be easily seen.
(a)
(b)
In order to get accessible limits for the excited neutrinos at high energy collider, we plot the contours for excited neutrinos with spin1/2 and spin3/2. We choose the boson decay as . Here we consider the statistical significance:
Here is the integrated luminosity of the collider and we choose as the LHeC design luminosity. Our results for the are shown in Tables 4 and 5.


For the criteria (95% C.L.) we plot the () contour plot for excited spin3/2 neutrinos for both phenomenological currents and the contour plot for the excited spin1/2 neutrinos. In Figures 8 and 9, we choose the excited neutrino mass GeV for the analysis at TeV and GeV for the analysis at TeV. We see from these figures the allowed regions for the and couplings for the masses GeV at TeV and GeV at TeV. The values which we chose in our calculations for the coupling parameters ( for the excited spin3/2 neutrinos and for the excited spin1/2 neutrinos) are compatible with the contour plots.
4. Conclusion
We searched for the excited spin3/2 neutrino signal at leptonhadron collider LHeC for two different centers of mass energies. We used two different phenomenological currents for the spin3/2 excited neutrinos, and we used the same value of couplings. Since there is no theoretical prediction for the single production of excited neutrinos and the effective currents have unknown couplings, we did not consider the interference between the currents. A more detailed calculation shows an important parameter space in which the interference terms could be important.
We also deal with the spin1/2 excited neutrinos for comparison. Our analysis shows that the spin1/2 and spin3/2 excited neutrino signals discrimination is apparent at next colliders. Here we only take into account the effective currents describing the gauge interactions of excited and standard particles. It is possible to include the contact interactions which may enlarge the mass and coupling limits.
It is possible to search for single production of excited spin3/2 neutrinos at the LHC but it has smaller crosssection than LHeC. Therefore, the potential of LHeC is better than LHC to determine the limits on couplings of excited spin3/2 neutrinos.
Excited neutrinos with different spins would manifest themselves in three families. Here, we only investigated the excited electron neutrino. It is also possible to make the same analysis for excited muon neutrinos. Single production of excited muon neutrinos is possible at muonhadron colliders. Physics of colliders was studied in [54]. One can find the main parameters of FCCbased collider in [43, 55].
Competing Interests
The authors declare that they have no competing interests.
References
 H. Terazawa, Y. Chikashige, and K. Akama, “Unified model of the NambuJonaLasinio type for all elementaryparticle forces,” Physical Review D, vol. 15, no. 2, pp. 480–487, 1977. View at: Publisher Site  Google Scholar
 Y. Ne'eman, “Primitive particle model,” Physics Letters B, vol. 82, no. 1, pp. 69–70, 1979. View at: Publisher Site  Google Scholar
 H. Terezawa, M. Yasuè, K. Akama, and M. Hayashi, “Observable effects of the possible substructure of leptons and quarks,” Physics Letters B, vol. 112, no. 45, pp. 387–392, 1982. View at: Publisher Site  Google Scholar
 F. M. Renard, “Excited quarks and new hadronic states,” Il Nuovo Cimento A, vol. 77, no. 1, pp. 1–20, 1983. View at: Publisher Site  Google Scholar
 E. J. Eichten, K. D. Lane, and M. E. Peskin, “New tests for quark and lepton substructure,” Physical Review Letters, vol. 50, no. 11, pp. 811–814, 1983. View at: Publisher Site  Google Scholar
 A. de Rújula, L. Maiani, and R. Petronzio, “Search for excited quarks,” Physics Letters B, vol. 140, no. 34, pp. 253–258, 1984. View at: Publisher Site  Google Scholar
 J. Kühn and P. M. Zerwas, “Excited quarks and leptons,” Physics Letters B, vol. 147, no. 1–3, pp. 189–196, 1984. View at: Publisher Site  Google Scholar
 O. Çakır and A. Ozansoy, “Single production of excited spin3/2 neutrinos at linear colliders,” Physical Review D, vol. 79, no. 5, Article ID 055001, 2009. View at: Publisher Site  Google Scholar
 J. L. Leite Lopes, J. A. Martins Simoes, and D. Spehler, “Production and decay properties of possible spin 32 leptons,” Physics Letters B, vol. 94, no. 3, pp. 367–372, 1980. View at: Publisher Site  Google Scholar
 J. Leite Lopes, J. A. Martins Simoes, and D. Spehler, “Possible spin3/2 quarks and scaling violations in neutrino reactions,” Physical Review D, vol. 23, no. 3, pp. 797–799, 1981. View at: Publisher Site  Google Scholar
 J. Leite Lopes, D. Spehler, and J. A. Martins Simoes, “Weak interactions involving spin3/2 leptons,” Physical Review D, vol. 25, no. 7, pp. 1854–1859, 1982. View at: Publisher Site  Google Scholar
 Y. Tosa and R. E. Marshak, “Exotic fermions,” Physical Review D, vol. 32, no. 3, pp. 774–780, 1985. View at: Publisher Site  Google Scholar
 O. J. P. Éboli, E. M. Gregores, J. C. Montero, S. F. Novaes, and D. Spehler, “Excited leptonic states in polarized ${e}^{}\gamma $ and ${{e}^{+}e}^{}$ collisions,” Physical Review D, vol. 53, no. 3, pp. 1253–1263, 1996. View at: Publisher Site  Google Scholar
 D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, “Progress toward a theory of supergravity,” Physical Review. D, vol. 13, no. 12, pp. 3214–3218, 1976. View at: Publisher Site  Google Scholar  MathSciNet
 M. Sahin, “Resonant production of Spin3/2 color octet electron at the LHeC,” Acta Physica Polonica B, vol. 45, no. 9, pp. 1811–1831, 2014. View at: Publisher Site  Google Scholar
 J. F. Nieves, “Electromagnetic properties of spin3/2 Majorana particles,” Physical Review D, vol. 88, no. 3, Article ID 036006, 2013. View at: Publisher Site  Google Scholar
 D. A. Dicus, D. Karabacak, S. Nandi, and S. K. Rai, “Search for spin3/2 quarks at the Large Hadron Collider,” Physical Review D, vol. 87, no. 1, Article ID 015023, 2013. View at: Publisher Site  Google Scholar
 W. J. Stirling and E. Vryonidou, “Effect of spin3/2 top quark excitation on $t\stackrel{}{t}$ production at the LHC,” JHEP, vol. 1201, article 055, 2012. View at: Publisher Site  Google Scholar
 M. Lindner, F. S. Queiroz, W. Rodejohann, and C. E. Yaguna, “Leftright symmetry and lepton number violation at the Large Hadron electron Collider,” Journal of High Energy Physics, vol. 2016, article 140, 2016. View at: Publisher Site  Google Scholar
 F. Boudjema and A. Djouadi, “Looking for the LEP at LEP. The excited neutrino scenario,” Physics Letters B, vol. 240, no. 34, pp. 485–491, 1990. View at: Publisher Site  Google Scholar
 B. Adeva, O. Adriani, M. AguilarBenitez et al., “Search for excited neutrinos from Z^{0} decays,” Physics Letters B, vol. 252, no. 3, pp. 525–532, 1990. View at: Publisher Site  Google Scholar
 D. Decamp, B. Deschizeaux, C. Goy et al., “Search for excited neutrinos in Z decay,” Physics Letters B, vol. 250, no. 12, pp. 172–182, 1990. View at: Publisher Site  Google Scholar
 O. J. P. Eboli, S. M. Lietti, and P. Mathews, “Excited leptons at the CERN large Hadron collider,” Physical Review D, vol. 65, no. 7, Article ID 075003, 2002. View at: Publisher Site  Google Scholar
 A. Belyaev, C. Leroy, and R. Mehdiyev, “Production of excited neutrinos at the LHC,” The European Physical Journal C, vol. 41, supplement 2, pp. 1–10, 2005. View at: Publisher Site  Google Scholar
 O. Çakır, İ. T. Çakır, and Z. Kırca, “Single production of excited neutrinos at future e^{+}e^{−}, ep and pp colliders,” Physical Review D, vol. 70, no. 7, Article ID 075017, 2004. View at: Publisher Site  Google Scholar
 A. Belyaev and E. Boos, “Excited neutrinos at the next linear colliders,” Physics of Atomic Nuclei, vol. 56, pp. 1447–1454, 1993. View at: Google Scholar
 A. Belyaev and E. Boos, “Excited neutrinos at the next linear colliders,” Physics of Atomic Nuclei, vol. 56, no. 11, pp. 5–15, 1993. View at: Google Scholar
 A. Belyaev, E. Boos, and A. Pukhov, “Study of excited neutrino production in ${{e}^{+}e}^{}$, γe and γγ collisions at TeV energies,” Physics Letters B, vol. 296, no. 34, pp. 452–457, 1992. View at: Publisher Site  Google Scholar
 M. Köksal, “Analysis of excited neutrinos at the CLIC,” International Journal of Modern Physics A, vol. 29, no. 24, Article ID 1450138, 2014. View at: Publisher Site  Google Scholar
 R. Walsh and A. J. Ramalho, “Virtual excited neutrino exchange in W boson pair production,” Physical Review D, vol. 67, no. 9, Article ID 097702, 2003. View at: Publisher Site  Google Scholar
 M. M. Reynoso, I. Romero, and O. A. Sampayo, “Excited neutrino production by ultrahigh energy neutrinos traversing the Earth,” Physical Review D, vol. 86, no. 11, Article ID 113012, 2012. View at: Publisher Site  Google Scholar
 S. C. İnan and M. Köksal, “The impact of excited neutrinos on $\nu \stackrel{}{\nu}\to \gamma \gamma $ process,” Advances in High Energy Physics, vol. 2012, Article ID 571874, 8 pages, 2012. View at: Publisher Site  Google Scholar
 P. Achard, O. Adriani, M. AguilarBenitez et al., “Search for excited leptons at LEP,” Physics Letters B, vol. 568, no. 12, pp. 23–34, 2003. View at: Publisher Site  Google Scholar
 F. D. Aaron et al., “A search for excited neutrinos in e^{−}p collisions at HERA,” Physics Letters B, vol. 663, no. 5, pp. 382–389, 2008. View at: Publisher Site  Google Scholar
 G. Aad, B. Abbott, J. Abdallah et al., “Search for new phenomena in events with three or more charged leptons in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector,” Journal of High Energy Physics, vol. 2015, article 138, 2015. View at: Publisher Site  Google Scholar
 S. R. Choudhury, R. G. Ellis, and G. C. Joshi, “Limits on excited spin$3/2$ leptons,” Physical Review D, vol. 31, no. 9, pp. 2390–2392, 1985. View at: Publisher Site  Google Scholar
 F. M. L. Almeida, J. H. Lopes, J. A. Martins Simões, and A. J. Ramalho, “Production and decay of single heavy spin3/2 leptons in high energy electronpositron collisions,” Physical Review D, vol. 53, no. 7, article 3555, 1996. View at: Publisher Site  Google Scholar
 J. L. Abelleira Fernandez, C. Adolphsen, A. N. Akay et al., “A large hadron electron collider at CERN: report on the physics and design concepts for machine and detector,” Journal of Physics G: Nuclear and Particle Physics, vol. 39, no. 7, Article ID 075001, 2012. View at: Publisher Site  Google Scholar
 O. Brüning and M. Klein, “The large hadron electron collider,” Modern Physics Letters A, vol. 28, no. 16, Article ID 1330011, 2013. View at: Publisher Site  Google Scholar
 P. Newman and A. Stasto, “Dig deeper,” Nature Physics, vol. 9, no. 8, pp. 448–450, 2013. View at: Publisher Site  Google Scholar
 T. N. Trinh and E. Sauvan, “Single production of excited leptons at the LHeC,” CERN Internal Note CERNLHeCNote2010011 PHY, 2011, https://cds.cern.ch/record/1354237. View at: Google Scholar
 Website of FCC Study, https://fcc.web.cern.ch.
 Y. C. Acar, U. Kaya, B. B. Oner, and S. Sultansoy, “FCC based ep and μp colliders,” https://arxiv.org/abs/1510.08284. View at: Google Scholar
 P. L. Csonka and J. Rees, “A device to produce high centerofmass energy e+e collisionsaccelerator beam colliding with a stored beam,” Nuclear Instruments and Methods, vol. 96, no. 1, pp. 149–155, 1971. View at: Publisher Site  Google Scholar
 S. Sultansoy, “Four ways to TeV scale,” Turkish Journal of Physics, vol. 22, no. 7, pp. 575–594, 1998. View at: Google Scholar
 S. Sultansoy, “Linac ring type colliders: second way to TeV scale,” The European Physical Journal C, vol. 33, supplement 1, pp. s1064–s1066, 2004. View at: Google Scholar
 K. Hagiwara, D. Zeppenfeld, and S. Komamiya, “Excited lepton production at LEP and HERA,” Zeitschrift für Physik C, vol. 29, no. 1, pp. 115–122, 1985. View at: Publisher Site  Google Scholar
 F. Boudjema, A. Djouadi, and J. L. Kneur, “Excited fermions at ${e}^{+}{e}^{}$ and eP colliders,” Zeitschrift für Physik C Particles and Fields, vol. 57, no. 3, pp. 425–449, 1993. View at: Publisher Site  Google Scholar
 U. Baur, M. Spira, and P. M. Zerwas, “Excitedquark and lepton production at hadron colliders,” Physical Review D, vol. 42, no. 3, pp. 815–824, 1990. View at: Publisher Site  Google Scholar
 W. Rarita and J. S. Schwinger, “On a theory of particles with halfintegral spin,” Physical Review, vol. 60, no. 1, p. 61, 1941. View at: Publisher Site  Google Scholar
 A. Belyaev, N. D. Christensen, and A. Pukhov, “CalcHEP 3.4 for collider physics within and beyond the Standard Model,” Computer Physics Communications, vol. 184, no. 7, pp. 1729–1769, 2013. View at: Publisher Site  Google Scholar
 A. Pukhov, “CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages,” https://arxiv.org/abs/hepph/0412191. View at: Google Scholar
 A. Pukhov, E. Boos, M. Dubinin et al., “CompHEP—a package for evaluation of Feynman diagrams and integration over multiparticle phase space. User's manual for version 33,” https://arxiv.org/abs/hepph/9908288. View at: Google Scholar
 I. F. Ginzburg, “Physics at future e p, gamma p (linacring) and mu p colliders,” Turkish Journal of Physics, vol. 22, pp. 607–610, 1998. View at: Google Scholar
 Y. Acar, A. N. Akay, S. Beser et al., “FCC based LeptonHadron and PhotonHadron colliders: luminosity and physics,” https://arxiv.org/abs/1608.02190. View at: Google Scholar
Copyright
Copyright © 2016 A. Ozansoy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP^{3}.