Table of Contents Author Guidelines Submit a Manuscript
Advances in Multimedia
Volume 2008 (2008), Article ID 164027, 27 pages
http://dx.doi.org/10.1155/2008/164027
Research Article

Traffic and Quality Characterization of the H.264/AVC Scalable Video Coding Extension

1Samsung Information Systems America, Digital Media Solutions Lab, 3345 Michelson Drive, Suite 250, Irvine, CA 92612, USA
2Department of Electrical Engineering, Arizona State University, Goldwater Center MC 5706, AZ 85287-5706, USA

Received 9 June 2008; Accepted 14 August 2008

Academic Editor: Shiwen Mao

Copyright © 2008 Geert Van der Auwera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H.-C. Huang, W.-H. Peng, T. Chiang, and H.-M. Hang, “Advances in the scalable amendment of H.264/AVC,” IEEE Communications Magazine, vol. 45, no. 1, pp. 68–76, 2007. View at Publisher · View at Google Scholar
  2. H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, 2007. View at Publisher · View at Google Scholar
  3. D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4 advanced video coding standard and its applications,” IEEE Communications Magazine, vol. 44, no. 8, pp. 134–143, 2006. View at Publisher · View at Google Scholar
  4. M. Krunz, “Bandwidth allocation strategies for transporting variable bit rate video traffic,” IEEE Communications Magazine, vol. 37, no. 1, pp. 40–46, 1999. View at Publisher · View at Google Scholar
  5. T. V. Lakshman, A. Ortega, and A. R. Reibman, “VBR video: tradeoffs and potentials,” Proceedings of the IEEE, vol. 86, no. 5, pp. 952–972, 1998. View at Publisher · View at Google Scholar
  6. H. Radha, Y. Chen, K. Parthasarathy, and R. Cohen, “Scalable internet video using MPEG-4,” Signal Processing: Image Communication, vol. 15, no. 1-2, pp. 95–126, 1999. View at Publisher · View at Google Scholar
  7. D. E. Wrege, E. W. Knightly, H. Zhang, and J. Liebeherr, “Deterministic delay bounds for VBR video in packet-switching networks: fundamental limits and practical trade-offs,” IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 352–362, 1996. View at Publisher · View at Google Scholar
  8. Z.-L. Zhang, J. Kurose, J. D. Salehi, and D. Towsley, “Smoothing, statistical multiplexing, and call admission control for stored video,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 6, pp. 1148–1166, 1997. View at Publisher · View at Google Scholar
  9. Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Resource allocation for multimedia streaming over the internet,” IEEE Transactions on Multimedia, vol. 3, no. 3, pp. 339–355, 2001. View at Publisher · View at Google Scholar
  10. T. Ahmed, A. Mehaoua, R. Boutaba, and Y. Iraqi, “Adaptive packet video streaming over IP networks: a cross-layer approach,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 385–401, 2005. View at Publisher · View at Google Scholar
  11. W.-C. Feng and J. Rexford, “Performance evaluation of smoothing algorithms for transmitting prerecorded variable-bit-rate video,” IEEE Transactions on Multimedia, vol. 1, no. 3, pp. 302–313, 1999. View at Publisher · View at Google Scholar
  12. M. Fidler, V. Sander, and W. Klimala, “Traffic shaping in aggregate-based networks: implementation and analysis,” Computer Communications, vol. 28, no. 3, pp. 274–286, 2005. View at Publisher · View at Google Scholar
  13. T. Kim and M. H. Ammar, “Optimal quality adaptation for scalable encoded video,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 344–356, 2005. View at Publisher · View at Google Scholar
  14. A. R. Reibman and M. T. Sun, Compressed Video over Networks, Marcel Dekker, New York, NY, USA, 2000.
  15. D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, “Streaming video over the internet: approaches and directions,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 282–300, 2001. View at Publisher · View at Google Scholar
  16. M. Wu, S. S. Karande, and H. Radha, “Network-embedded FEC for optimum throughput of multicast packet video,” Signal Processing: Image Communication, vol. 20, no. 8, pp. 728–742, 2005. View at Publisher · View at Google Scholar
  17. S. Chatziperis, P. Koutsakis, and M. Paterakis, “A new call admission control mechanism for multimedia traffic over next-generation wireless cellular networks,” IEEE Transactions on Mobile Computing, vol. 7, no. 1, pp. 95–112, 2008. View at Publisher · View at Google Scholar
  18. C. Cicconetti, L. Lenzini, E. Mingozzi, and G. Stea, “Design and performance analysis of the real-time HCCA scheduler for IEEE 802.11e WLANs,” Computer Networks, vol. 51, no. 9, pp. 2311–2325, 2007. View at Publisher · View at Google Scholar
  19. M. Etoh and T. Yoshimura, “Advances in wireless video delivery,” Proceedings of the IEEE, vol. 93, no. 1, pp. 111–122, 2005. View at Publisher · View at Google Scholar
  20. L. Haratcherev, J. Taal, K. Langendoen, R. Lagendijk, and H. Sips, “Optimized video streaming over 802.11 by cross-layer signaling,” IEEE Communications Magazine, vol. 44, no. 1, pp. 115–121, 2006. View at Publisher · View at Google Scholar
  21. M. Hassan and M. Krunz, “Video streaming over wireless packet networks: an occupancy-based rate adaptation perspective,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 8, pp. 1017–1027, 2007. View at Publisher · View at Google Scholar
  22. S. Khan, Y. Peng, E. Steinbach, M. Sgroi, and W. Kellerer, “Application-driven cross-layer optimization for video streaming over wireless networks,” IEEE Communications Magazine, vol. 44, no. 1, pp. 122–130, 2006. View at Publisher · View at Google Scholar
  23. F. Yang, Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Bit allocation for scalable video streaming over mobile wireless internet,” in Proceedings of the 23rd Annual Joint Conference of IEEE Computer and Communications Societies (INFOCOM '04), vol. 3, pp. 2142–2151, Hong Kong, March 2004. View at Publisher · View at Google Scholar
  24. Q. Zhang, W. Zhu, and Y.-Q. Zhang, “End-to-end QoS for video delivery over wireless internet,” Proceedings of the IEEE, vol. 93, no. 1, pp. 123–134, 2005. View at Publisher · View at Google Scholar
  25. Y. Cai, A. Natarajan, and J. Wong, “On scheduling of peer-to-peer video services,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 1, pp. 140–145, 2007. View at Publisher · View at Google Scholar
  26. H.-Y. Hsieh and R. Sivakumar, “Accelerating peer-to-peer networks for video streaming using multipoint-to-point communication,” IEEE Communications Magazine, vol. 42, no. 8, pp. 111–119, 2004. View at Publisher · View at Google Scholar
  27. Y. Huang, Y.-F. Chen, R. Jana et al., “Capacity analysis of MediaGrid: a P2P IPTV platform for fiber to the node (FTTN) networks,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 1, pp. 131–139, 2007. View at Publisher · View at Google Scholar
  28. E. Kim and J. C. L. Liu, “Design of HD-quality streaming networks for real-time content distribution,” IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 392–401, 2006. View at Publisher · View at Google Scholar
  29. B. Li and H. Yin, “Peer-to-peer live video streaming on the internet: issues, existing approaches, and challenges [Peer-to-peer multimedia streaming],” IEEE Communications Magazine, vol. 45, no. 6, pp. 94–99, 2007. View at Publisher · View at Google Scholar
  30. J. Liang and K. Nahrstedt, “DagStream: locality aware and failure resilient peer-to-peer streaming,” in Multimedia Computing and Networking, vol. 6071 of Proceedings of SPIE, pp. 1–15, San Jose, Calif, USA, January 2006. View at Publisher · View at Google Scholar
  31. Y. Shen, Z. Liu, S. Panwar, K. Ross, and Y. Wang, “Streaming layered encoded video using peers,” in Proceedings of IEEE International Conference on Multimedia and Expo (ICME '05), pp. 966–969, Amsterdam, The Netherlands, July 2005. View at Publisher · View at Google Scholar
  32. K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasibility of peer-to-peer architectures for large-scale live streaming application,” in Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM '04), pp. 107–120, Portland, Ore, USA, August-September 2004.
  33. E. Gurses and O. B. Akan, “Multimedia communication in wireless sensor networks,” Annals of Telecommunications, vol. 60, no. 7-8, pp. 799–827, 2005. View at Google Scholar
  34. Z. He and D. Wu, “Resource allocation and performance analysis of wireless video sensors,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 5, pp. 590–599, 2006. View at Publisher · View at Google Scholar
  35. S. Misra, M. Reisslein, and G. Xue, “A survey of multimedia streaming in wireless sensor networks,” IEEE Communications Surveys and Tutorials, vol. 10, no. 4, 2008. View at Google Scholar
  36. G. Van der Auwera, P. T. David, and M. Reisslein, “Traffic and quality characterization of single-layer video streams encoded with the H.264/MPEG-4 advanced video coding standard and scalable video coding extension,” IEEE Transactions on Broadcasting, vol. 54, no. 3, part 2, pp. 698–718, 2008. View at Publisher · View at Google Scholar
  37. M. Dai and D. Loguinov, “Wavelet and time-domain modeling of multi-layer VBR video traffic,” in Proceedings of Packet Video Workshop, Irvine, Calif, USA, December 2004.
  38. M. Dai and D. Loguinov, “Analysis and modeling of MPEG-4 and H.264 multi-layer video traffic,” in Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '05), vol. 4, pp. 2257–2267, Miami, Fla, USA, March 2005. View at Publisher · View at Google Scholar
  39. T. Gan, K.-K. Ma, and L. Zhang, “Dual-plan bandwidth smoothing for layer-encoded video,” IEEE Transactions on Multimedia, vol. 7, no. 2, pp. 379–392, 2005. View at Publisher · View at Google Scholar
  40. R. Mangharam, S. Pollin, B. Bougard et al., “Optimal fixed and scalable energy management for wireless networks,” in Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '05), vol. 1, pp. 114–125, Miami, Fla, USA, March 2005. View at Publisher · View at Google Scholar
  41. S. H. Mian, “Analysis of MPEG-4 scalable encoded video,” IEE Proceedings: Communications, vol. 151, no. 3, pp. 270–279, 2004. View at Publisher · View at Google Scholar
  42. Z. Miao and A. Ortega, “Expected run-time distortion based scheduling for delivery of scalable media,” in Proceedings of the Packet Video Workshop (PVW '02), vol. 1, Pittsburg, Pa, USA, April 2002.
  43. S. Nelakuditi, R. R. Harinath, E. Kusmierek, and Z.-L. Zhang, “Providing smoother quality layered video stream,” in Proceedings of the 10th International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV '00), Chapel Hill, NC, USA, June 2000.
  44. A. Raghuveer, N. Kang, and D. Du, “Techniques for efficient stream of layered video in heterogeneous client environments,” in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '05), vol. 1, pp. 245–250, St. Louis, Mo, USA, November 2005. View at Publisher · View at Google Scholar
  45. R. Rejaie, M. Handley, and D. Estrin, “Layered quality adaptation for Internet video streaming,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 12, pp. 2530–2543, 2000. View at Publisher · View at Google Scholar
  46. D. Sarkar, U. K. Sarkar, and W. Zhou, “Bandwidth estimation for multiplexed videos using multinomial model,” Computer Communications, vol. 30, no. 2, pp. 269–279, 2007. View at Publisher · View at Google Scholar
  47. P. Seeling, M. Reisslein, and B. Kulapala, “Network performance evaluation using frame size and quality traces of singlelayer and two-layer video: a tutorial,” IEEE Communications Surveys and Tutorials, vol. 6, no. 2, pp. 58–78, 2004. View at Google Scholar
  48. P. Seeling and M. Reisslein, “The rate variability-distortion (VD) curve of encoded video and its impact on statistical multiplexing,” IEEE Transactions on Broadcasting, vol. 51, no. 4, pp. 473–492, 2005. View at Publisher · View at Google Scholar
  49. G. Van der Auwera, M. Reisslein, and L. J. Karam, “Video texture and motion based modeling of rate variability-distortion (VD) curves,” IEEE Transactions on Broadcasting, vol. 53, no. 3, pp. 637–648, 2007. View at Publisher · View at Google Scholar
  50. X. M. Zhang, A. Vetro, Y. Q. Shi, and H. Sun, “Constant quality constrained rate allocation for FGS-coded video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 2, pp. 121–130, 2003. View at Publisher · View at Google Scholar
  51. L. Zhao, J.-W. Kim, and C.-C. J. Kuo, “Constant quality rate control for streaming MPEG-4 FGS video,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '02), vol. 4, pp. 544–547, Scottsdale, Ariz, USA, May 2002. View at Publisher · View at Google Scholar
  52. J.-A. Zhao, B. Li, and I. Ahmad, “Traffic model for layered video: an approach on markovian arrival process,” in Proceedings of the Packet Video Workshop, Nantes, France, April 2003.
  53. F. Zhijun, Z. Yuanhua, and Z. Daowen, “Kalman optimized model for MPEG-4 VBR sources,” IEEE Transactions on Consumer Electronics, vol. 50, no. 2, pp. 688–690, 2004. View at Publisher · View at Google Scholar
  54. W. Zhou, D. Sarkar, and S. Ramakrishnan, “Traffic models for MPEG-4 spatial scalable video,” in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '05), vol. 1, pp. 256–260, St. Louis, Mo, USA, November-December 2005. View at Publisher · View at Google Scholar
  55. G. Van der Auwera, P. T. David, and M. Reisslein, “Traffic characteristics of H.264/AVC variable bit rate video,” IEEE Communications Magazine, vol. 46, no. 11, pp. 698–718, 2008. View at Google Scholar
  56. A. Undheim, Y. Lin, and P. J. Emstad, “Characterization of slice-based H.264/AVC encoded video traffic,” in Proceedings of the 4th European Conference on Universal Multiservice Networks (ECUMN '07), pp. 263–272, Toulouse, France, February 2007. View at Publisher · View at Google Scholar
  57. P. Li, W. S. Lin, S. Rahardja, X. Lin, X. K. Yang, and Z. G. Li, “Geometrically determining the leaky bucket parameters for video streaming over constant bit-rate channels,” Signal Processing: Image Communication, vol. 20, no. 2, pp. 193–204, 2005. View at Publisher · View at Google Scholar
  58. T. Ozcelebi, M. O. Sunay, A. M. Tekalp, and M. R. Civanlar, “Cross-layer optimized rate adaptation and scheduling for multiple-user wireless video streaming,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 4, pp. 760–769, 2007. View at Publisher · View at Google Scholar
  59. T. Ozcelebi, A. M. Tekalp, and M. R. Civanlar, “Delay-distortion optimization for content-adaptive video streaming,” IEEE Transactions on Multimedia, vol. 9, no. 4, pp. 826–836, 2007. View at Publisher · View at Google Scholar
  60. H.-H. Juan, H.-C. Huang, C. Huang, and T. Chiang, “Scalable video streaming over mobile WiMAX,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '07), pp. 3463–3466, New Orleans, La, USA, May 2007. View at Publisher · View at Google Scholar
  61. D. T. Nguyen and J. Ostermann, “Congestion control for scalable video streaming using the scalability extension of H.264/AVC,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 2, pp. 246–253, 2007. View at Publisher · View at Google Scholar
  62. M. Van der Schaar, Y. Andreopoulos, and Z. Hu, “Optimized scalable video streaming over IEEE 802.11 a/e HCCA Wireless networks under delay constraints,” IEEE Transactions on Mobile Computing, vol. 5, no. 6, pp. 755–768, 2006. View at Publisher · View at Google Scholar
  63. T. Schierl, K. Gänger, C. Hellge, T. Wiegand, and T. Stockhammer, “SVC-based multisource streaming for robust video transmission in mobile ad hoc networks,” IEEE Wireless Communications, vol. 13, no. 5, pp. 96–103, 2006. View at Publisher · View at Google Scholar
  64. T. Schierl, C. Hellge, S. Mirta, K. Gruneberg, and T. Wiegand, “Using H.264/AVC-based scalable video coding (SVC) for real time streaming in wireless IP networks,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '07), pp. 3455–3458, New Orleans, La, USA, May 2007. View at Publisher · View at Google Scholar
  65. D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC fidelity range extensions: tools, profiles, performance, and application areas,” in Proceedings of IEEE International Conference on Image Processing (ICIP '05), vol. 1, pp. 593–596, Genoa, Italy, September 2005. View at Publisher · View at Google Scholar
  66. M. Wien, H. Schwarz, and T. Oelbaum, “Performance analysis of SVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1194–1203, 2007. View at Publisher · View at Google Scholar
  67. ISO/IEC JTC 1/SC 29/WG 11 N2802, “Information technology-generic coding of audio-visual objects—part 2: visual, final proposed draft amendment 1,” Geneva, Switzerland, July 1999.
  68. O. Marques, P. Auger, and L. M. Mayron, “SimViKi: a tool for the simulation of secure video communication systems,” in Proceedings of the 4th IASTED International Conference on Communications, Internet, and Information Technology (CIIT '06), St. Thomas, Virgin Islands, USA, December 2006.
  69. M. Ghanbari, Standard Codecs: Image Compression to Advanced Video Coding, Institution of Electrical Engineers, London, UK, 2003.
  70. H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of hierarchical B pictures and MCTF,” in Proceedings of IEEE International Conference on Multimedia and Expo (ICME '06), pp. 1929–1932, Toronto, Canada, July 2006. View at Publisher · View at Google Scholar
  71. H. Radha, M. Van der Schaar, and Y. Chen, “The MPEG-4 fine-grained scalable video coding method for multimedia streaming over IP,” IEEE Transactions on Multimedia, vol. 3, no. 1, pp. 53–68, 2001. View at Publisher · View at Google Scholar
  72. F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progressive fine granularity scalable video coding,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 332–344, 2001. View at Publisher · View at Google Scholar
  73. G. Van der Auwera, P. T. David, M. Reisslein, and L. J. Karam, “Video traffic analysis of H.264 SVC: temporal and spatial scalability,” Tech. Rep., Arizona State University, Tempe, Ariz, USA, September 2007. View at Google Scholar
  74. P. T. David, G. Van der Auwera, and M. Reisslein, “Video traffic analysis of H.264 SVC: fine granularity scalability,” Tech. Rep., Arizona State University, Tempe, Ariz, USA, September 2007. View at Google Scholar
  75. M. Reisslein, J. Lassetter, S. Ratman, O. Lotfallah, F. Fitzek, and S. Panchanathan, “Traffic and quality characterization of scalable encoded video: a large-scale trace-based study—part 1: overview and definitions,” Tech. Rep., Arizona State University, Tempe, Ariz, USA, December 2003. View at Google Scholar
  76. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time applications, STD 64, RFC 3550,” July 2003. View at Google Scholar
  77. S. Wenger, Y.-K. Wang, and T. Schierl, “RTP payload format for SVC video,” July 2007, http://tools.ietf.org/html/draft-ietf-avt-rtp-svc-02.