Table of Contents Author Guidelines Submit a Manuscript
Advances in Multimedia
Volume 2011, Article ID 852518, 19 pages
http://dx.doi.org/10.1155/2011/852518
Research Article

From Community Detection to Mentor Selection in Rating-Free Collaborative Filtering

LORIA—Nancy-Université, 615 Rue du Jardin Botanique, 54506 Vandoeuvre-lès-Nancy, France

Received 5 October 2010; Revised 27 December 2010; Accepted 10 January 2011

Academic Editor: Andrea Prati

Copyright © 2011 Armelle Brun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. ChoiceStream, “Choicestream personalization survey,” 2006. View at Google Scholar
  2. S. Castagnos, N. Jones, and P. Pu, “Eye-tracking product recommender's usage,” in Proceedings of the 4th ACM Conference on Recommender Systems (RecSys '10), pp. 29–36, Barcelona, Spain, 2010. View at Publisher · View at Google Scholar
  3. M. Pazzani and D. Billsus, “The adaptive web,” in Content-Based Recommendation Systems, Springer, Berlin, Germany, 2007. View at Google Scholar
  4. R. D. Burke, K. J. Hammond, and B. C. Young, “Knowledge-based navigation of complex information spaces,” in Proceedings of the 13th National Conference on Artificial Intelligence (AAAI '96), vol. 1, pp. 462–468, Portland, Ore, USA, August 1996.
  5. D. Goldberg, D. Nichols, B. Oki, and D. Terry, “Using collaborative filtering to weave an information tapestry,” Communications of the ACM, vol. 35, no. 12, pp. 61–70, 1992. View at Google Scholar
  6. J. Wang, A. P. de Vries, and M. J. T. Reinders, “Unifying user-based and item-based collaborative filtering approaches by similarity fusion,” in Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 501–508, Seatttle, Wash, USA, August 2006.
  7. S. Bruninghaus and K. D. Ashley, “Toward adding knowledge to learning algorithms for indexing legal cases,” in Proceedings of the 7th International Conference on Artificial Intelligence and Law, pp. 9–17, June 1999.
  8. K.-Y. Jung, D.-H. Park, and J.-H. Lee, “Hybrid collaborative filtering and content-based filtering for improved recommender system,” in Proceedings of the International Conference on Computational Science (ICCS '04), vol. 3036 of Lecture Notes in Computer Science, pp. 295–302, 2004.
  9. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collaborative filtering recommender systems,” ACM Transactions on Information Systems, vol. 22, no. 1, pp. 5–53, 2004. View at Publisher · View at Google Scholar
  10. A. Brun, A. Hamad, O. Buffet, and A. Boyer, “Towards preference relations in recommender systems,” in Proceedings of the Workshop on Preference Learning, European Conference on Machine Learning and Principle and Practice of Knowledge Discovery in Databases (ECML-PKDD '10), 2010.
  11. S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3–5, pp. 75–174, 2009. View at Google Scholar
  12. J. Chen, R. Zaane, and R. Goebel, “Local community identification in social networks,” in Proceedings of the Advances in Social Network Analysis and Mining, pp. 237–242, 2009.
  13. J. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms for collaborative filtering,” in Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI '98), 1998.
  14. B. M. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based collaborative filtering recommendation algorithms,” in Proceedings of the 10th International Conference on World Wide Web (WWW '01), pp. 285–295, 2001.
  15. L. Candillier, F. Meyer, and M. Boullé, “Comparing state-of-the-art collaborative filtering systems,” in Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM '07), vol. 4571 of Lecture Notes in Computer Science, pp. 548–562, Leipzig, Germany, July 2007.
  16. S. Castagnos and A. Boyer, “A client/server user-based collaborative filtering algorithm: model and implementation,” in Proceedings of the 17th European Conference on Artificial Intelligence (ECAI '06), pp. 617–621, 2006.
  17. S. Castagnos and A. Boyer, “Personalized communities in a distributed recommender system,” in Proceedings of the 29th European Conference on IR Research (ECIR '07), vol. 4425 of Lecture Notes in Computer Science, pp. 343–355, Rome, Italy, April 2007.
  18. N. Lathia, S. Hailes, and L. Capra, “Trust-based collaborative filtering,” International Federation for Information Processing, vol. 263, pp. 119–134, 2008. View at Publisher · View at Google Scholar
  19. G. Amati, C. Carpineto, and G. Romano, “An effective threshold-based neighbor selection in collaborative filtering,” in Proceedings of European Conference on Information Retrieval (ECIR '07), pp. 712–715, 2007.
  20. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework for performing collaborative filtering,” in Proceedings of the SIGIR Conference, pp. 230–237, 1999.
  21. M. Grcar, B. Fortuna, and D. Mladenic, “kNN versus SVM in the collaborative filtering framework,” in Proceedings of the 7th WEBKDD Workshop on Knowledge Discovery from the Web (WEBKDD '05), 2005.
  22. B. Mobasher, R. Burke, and J. J. Sandvig, “Model-based collaborative filtering as a defense against profile injection attacks,” in Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference (AAAI '06), vol. 2, pp. 1388–1393, Boston, Mass, USA, July 2006.
  23. L. Terán and A. Meier, “A fuzzy recommender system for eElections,” in Proceedings of the 1st International Conference on Electronic Government and Information Systems Perspective (EGOVIS '10), vol. 6267 of Lecture Notes in Computer Science, pp. 62–76, Bilbao, Spain, August-September 2010. View at Publisher · View at Google Scholar
  24. M. O’Connor and J. Herlocker, “Clustering items for collaborative filtering,” in Proceedings of the 22nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '99), 1999.
  25. L. Ungar and D. Foster, “Clustering methods for collaborative filtering,” in Proceedings of AAAI Workshop on Recommendation Systems, 1998.
  26. A. M. Martinez, P. Mittrapiyanuruk, and A. C. Kak, “On combining graph-partitioning with non-parametric clustering for image segmentation,” Computer Vision and Image Understanding, vol. 95, no. 1, pp. 72–85, 2004. View at Publisher · View at Google Scholar
  27. P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means clustering,” in Proceedings of the 15th International Conference on Machine Learning (ICML '98), pp. 91–99, Morgan Kaufmann, May 1998.
  28. P. Perny and J. Zucker, “Collaborative filtering methods based on fuzzy preference relations,” in Proceedings of the 4th Meeting of the Euro Working Group on Fuzzy Sets (EUROFUSE-SIC '99), 1999.
  29. R. A. Jarvis and E. A. Patrick, “Clustering using a similarity measure based on shared near neighbors,” IEEE Transactions on Computers, vol. 22, no. 11, pp. 1025–1034, 1973. View at Google Scholar
  30. L. Ertöz, M. Steinbach, and V. Kumar, “Information retrivial and clustering,” in Finding Topics in Collections of Documents: A Shared Nearest Neighbor Approach, W. Wu, H. Xiong, and S. Shekhar, Eds., 2002. View at Google Scholar
  31. S. Guha, R. Rastogi, and K. Shim, “CURE: an efficient clustering algorithm for large databases,” in Proceedings of the ACM-SIGMOD International Conference on Management of Data (SIGMOD '98), no. 2, pp. 73–84, 1998.
  32. J. Yin, X. Fan, Y. Chen, and J. Ren, “High-dimensional shared nearest neighbor clustering algorithm,” in Proceedings of the 2nd International Conference on Fuzzy Systems and Knowledge Discovery (FSKD '05), vol. 3614 of Lecture Notes in Computer Science, pp. 494–502, Changsa, China, August 2005.
  33. G. Xue, C. Lin, Q. Yang et al., “Scalable collaborative filtering using cluster-based smoothing,” in Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '05), 2005.
  34. N. Srinivasa and S. Medasani, “Active fuzzy clustering for collaborative filtering,” in Proceedings of IEEE International Conference on Fuzzy Systems, pp. 1697–1702, July 2004.
  35. J. B. Schafer, J. A. Konstan, and J. Riedl, “E-commerce recommendation applications,” Data Mining and Knowledge Discovery, vol. 5, no. 1-2, pp. 115–153, 2001. View at Google Scholar
  36. X.-M. Jiang, W.-G. Song, and W.-G. Feng, “Optimizing collaborative filtering by interpolating the individual and group behaviors,” in Proceedings of the 8th Asia-Pacific Web Conference (APWeb '06), vol. 3841 of Lecture Notes in Computer Science, pp. 568–578, Harbin, China, January 2006. View at Publisher · View at Google Scholar
  37. D. Oard and J. Kim, “Implicit feedback for recommender systems,” in Proceedings of the AAAI Workshop on Recommender Systems, pp. 81–83, 1998.
  38. S. Castagnos, Modélisation de comportements et apprentissage stochastique non supervisé de stratégies d’interactions sociales au sein de systèmes temps réel de recherche et d’accès à l’information, Ph.D. thesis, Nancy University, 2008.
  39. S. Castagnos and A. Boyer, “Privacy concerns when modeling users in collaborative filtering recommender systems,” in Social and Human Elements of Information Security: Emerging Trends and Countermeasures, 2008. View at Google Scholar
  40. G. Karypis, “Evaluation of item-based top-N recommendation algorithms,” in Proceedings of the ACM 10th International Conference on Information and Knowledge Management (CIKM '01), pp. 247–254, November 2001.
  41. G. Linden, B. Smith, and J. York, “Amazon.com recommendations: item-to-item collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1, pp. 76–80, 2003. View at Publisher · View at Google Scholar
  42. C. Miranda and A. M. Jorge, “Incremental collaborative filtering for binary ratings,” in Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence (WI '08), pp. 389–392, Sydney, Australia, December 2008. View at Publisher · View at Google Scholar
  43. J. Redpath, D. H. Glass, S. McClean, and L. Chen, “Collaborative filtering: the aim of recommender systems and the significance of user ratings,” in Proceedings of the 32nd European Conference on Information Retrieval (ECIR '10), vol. 5993 of Lecture Notes in Computer Science, pp. 394–406, Milton Keynes, UK, March 2010. View at Publisher · View at Google Scholar
  44. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Improving the effectiveness of collaborative filtering on anonymous web usage data,” in Proceedings of the IJCAI 2001 Workshop on Intelligent Techniques for Web Personalization (ITWP '01), 2001.
  45. G. Bonnin, A. Brun, and A. Boyer, “Web Intelligence and Intelligent Agents, chap. Skipping-Based Collaborative Recommendations Inspired from Statistical Language Modeling,” Zeeshan-ul-Hassan Usmani, March 2010.
  46. G. W. Flake, R. Tarjan, and K. Tsioutsiouliklis, “Graph clustering and minimum cut trees,” Internet Mathematics, vol. 1, no. 4, pp. 385–408, 2004. View at Google Scholar
  47. D. Zhou, J. Huang, and B. Schölkopf, “Learning from labeled and unlabeled data on a directed graph,” in Proceedings of the 22nd International Conference on Machine Learning (ICML'05), pp. 1036–1043, 2005.
  48. K. Tsuda and W. S. Noble, “Learning kernels from biological networks by maximizing entropy,” Bioinformatics, vol. 20, no. 1, pp. 326–333, 2004. View at Publisher · View at Google Scholar · View at PubMed
  49. J. Callut, K. Franoisse, M. Saerens, and P. Dupont, “Semi-supervised classification in graphs using bounded random walks,” in Proceedings of the 17th Annual Machine Learning Conference of Belgium and the Netherlands (BENELEARN '08), pp. 67–68, 2008.
  50. S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1, no. 1, pp. 27–64, 2007. View at Publisher · View at Google Scholar
  51. S. Papadopoulos, Y. Kompatsiaris, and A. Vakali, “Leveraging collective intelligence through community detection in tag networks,” in Proceedings of Workshop on Collective Knowledge Capturing and Representation (CKCaR '09), 2009.
  52. M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7821–7826, 2002. View at Publisher · View at Google Scholar · View at PubMed
  53. N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan, “Clustering social networks,” in Proceedings of Weaving the Astronomy Web (WAW '07), Lecture Notes in Computer Science, pp. 56–67, 2007.
  54. P. Wanjantuk and J. A. Keane, “Finding related documents via communities in the citation graph,” in Proceedings of the IEEE International Symposium on Communications and Information Technologies (ISCIT '04), vol. 1, pp. 445–450, Sapporo, Japan, October 2004.
  55. M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal community structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 4, pp. 1118–1123, 2008. View at Publisher · View at Google Scholar · View at PubMed
  56. G. W. Flake, S. Lawrence, and C. L. Giles, “Efficient identification of web communities,” in Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '01), pp. 150–160, Boston, Mass, USA, August 2000.
  57. Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic spreading in real networks: an eigenvalue viewpoint,” in Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS '03), pp. 25–34, Florence, Italy, October 2003.
  58. Y. Qi, F. Balem, C. Faloutsos, J. Klein-Seetharaman, and Z. Bar-Joseph, “Protein complex identification by supervised graph local clustering,” BioInformatics, vol. 24, no. 13, pp. 250–268, 2008. View at Publisher · View at Google Scholar · View at PubMed
  59. L. Tang, “Community detection in social networks,” http://www.public.asu.edu/~huanliu/dmml_presentation/2008/.
  60. R. Alba, “A graph-theoretic definition of a sociometric clique,” Journal of Mathematical Sociology, pp. 112–126, 1973. View at Google Scholar
  61. L. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40, pp. 35–41, 1977. View at Google Scholar
  62. H. Ino, M. Kudo, and A. Nakamura, “Partitioning of web graphs by community topology,” in Proceedings of the 14th International Conference on World Wide Web, pp. 661–669, 2005.
  63. B. Yang, W. K. Cheung, and J. Liu, “Community mining from signed social networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 10, pp. 1333–1348, 2007. View at Publisher · View at Google Scholar
  64. S. Gregory, “An algorithm to find overlapping community structure in networks,” in Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD '07), vol. 4702 of Lecture Notes in Computer Science, pp. 91–102, Warsaw, Poland, September 2007.
  65. J. Scott, Social Network Analysis: A Handbook, Sage, London, UK, 2nd edition, 2000.
  66. D. Chakrabarti, “AutoPart: parameter-free graph partitioning and outlier detection,” in Proceedings of the Principles and Practice of Knowledge Discovery in Databases Conference (PKDD '04), vol. 3202 of Lecture Notes in Computer Science, pp. 112–124, 2004.
  67. A. Pother, “Graph partitioning algorithms with applications to scientific computing,” Tech. Rep., Norfolk, Va, USA, 1997. View at Google Scholar
  68. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Paris, “Defining and identifying communities in networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2658–2663, 2004. View at Publisher · View at Google Scholar · View at PubMed
  69. A. Clauset, M. Newmann, and C. Moore, “Finding community structure in very large networks,” Physical Review, vol. 72, 2005. View at Google Scholar
  70. F. Luo, J. Z. Wang, and E. Promislow, “Exploring local community structures in large networks,” in Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence (WI '06), pp. 233–239, December 2006. View at Publisher · View at Google Scholar
  71. L. Branting, “Incremental detection of local community structure,” in Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, pp. 80–87, 2010.
  72. J. Tian, D. Chen, and Y. Fu, “A new local algorithm for detecting communities in networks,” in Proceedings of the 1st International Workshop on Education Technology and Computer Science (ETCS '09), vol. 2, pp. 721–724, Wuhan, China, March 2009. View at Publisher · View at Google Scholar
  73. Q. Song and N. Kasabov, “Foundations of cognitive science,” in ECM—A Novel On-Line, Evolving Clustering Method and Its Applications, M. I. Posner, Ed., pp. 631–682, 2001. View at Google Scholar
  74. J. G. Booth, G. Casella, and J. P. Hobert, “Clustering using objective functions and stochastic search,” Journal of the Royal Statistical Society B, vol. 70, no. 1, pp. 119–139, 2008. View at Publisher · View at Google Scholar
  75. C. C. Aggarwal, J. L. Wolf, K. lung Wu, and P. S. Yu, “Horting hatches an egg: a new graph-theoretic approach to collaborative filtering,” in Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 201–212, ACM Press, 1999.
  76. M. D. Ekstrand, P. Kannan, J. A. Stemper, J. T. Butler, J. A. Konstan, and J. T. Riedl, “Automatically building research reading lists,” in Proceedings of the 4th ACM Conference on Recommender Systems (RecSys '10), pp. 159–166, Barcelona, Spain, September 2010. View at Publisher · View at Google Scholar
  77. P. Viappiani, B. Faltings, and P. Pu, “Preference-based search using example-critiquing with suggestions,” Journal of Artificial Intelligence Research, vol. 27, pp. 465–503, 2006. View at Google Scholar
  78. V. Schickel-Zuber and B. Faltings, “Using hierarchical clustering for learning theontologies used in recommendation systems,” in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '07), pp. 599–608, San Jose, Calif, USA, August 2007. View at Publisher · View at Google Scholar
  79. L. Baltrunas and F. Ricci, “Dynamic item weighting and selection for collaborative filtering,” in Web Mining 2.0 Workshop, ECML-PKDD, Springer, 2007.
  80. C. Ziegler, Towards decentralized recommender systems, Ph.D. thesis, Albert-Ludwigs-Universitt Freiburg, 2005.
  81. A. Brun, G. Bonnin, and A. Boyer, “History dependent recommender systems based on partial matching,” in Proceedings of the 17th International Conference on User Modeling, Adaptation, and Personalization (UMAP '09), vol. 5535 of Lecture Notes in Computer Science, pp. 343–348, Trento, Italy, June 2009. View at Publisher · View at Google Scholar
  82. U. Shardanand and P. Maes, “Social information filtering: algorithms for automating "word of mouth",” in Proceedings of the Conference on Human Factors in Computing Systems (CHI '95), vol. 1, pp. 210–217, May 1995.
  83. J. Herlocker, J. A. Konstan, and J. Riedl, “An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms,” Information Retrieval, vol. 5, no. 4, pp. 287–310, 2002. View at Google Scholar
  84. R. Burke and B. Mobasher, “Trust and bias in multi-agent recommender systems,” in Proceedings of Workshop on Multi-Agent Information Retrieval and Recommender Systems, in Conjunction with the 19th International Joint Conference on Artificial Intelligence (IJCAI '05), Edinburgh, Scotland, 2005.