Table of Contents Author Guidelines Submit a Manuscript
Advances in Multimedia
Volume 2018, Article ID 6710865, 10 pages
https://doi.org/10.1155/2018/6710865
Research Article

Can Deep Learning Identify Tomato Leaf Disease?

1College of Engineering, Northeast Agricultural University, Harbin 150030, China
2College of Science, Northeast Agricultural University, Harbin 150030, China

Correspondence should be addressed to Qiufeng Wu; nc.ude.uaen@uwfq

Received 9 June 2018; Accepted 30 August 2018; Published 26 September 2018

Academic Editor: Alexander Loui

Copyright © 2018 Keke Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Chaerani and R. E. Voorrips, “Tomato early blight (Alternaria solani): The pathogen, genetics, and breeding for resistance,” Journal of General Plant Pathology, vol. 72, no. 6, pp. 335–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Dickey, L. S. Osborne, and C. L. Mckenzie, “Papaya (Carica papaya, Brassicales: Caricaceae) is not a host plant of tomato yellow leaf curl virus (TYLCV; family Geminiviridae, genus Begomovirus),” Florida Entomologist, vol. 95, no. 1, pp. 211–213, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Wei, L. Baoju, S. Yanxia, and X. Xuewen, “Studies on pathogenicity differentiation of corynespora cassiicola isolates, against cucumber, tomato and eggplant,” Acta Horticulturae Sinica, vol. 38, no. 3, pp. 465–470, 2011. View at Google Scholar
  4. P. Lindhout, W. Korta, M. Cislik, I. Vos, and T. Gerlagh, “Further identification of races of Cladosporium fulvum (Fulvia fulva) on tomato originating from the Netherlands France and Poland,” Netherlands Journal of Plant Pathology, vol. 95, no. 3, pp. 143–148, 1989. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Kubota, S. Tsuda, A. Tamai, and T. Meshi, “Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing,” Journal of Virology, vol. 77, no. 20, pp. 11016–11026, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Tian, B. Benedetti, and S. Kamoun, “A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato,” Plant Physiology, vol. 138, no. 3, pp. 1785–1793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. L. E. Blum, “Reduction of incidence and severity of Septoria lycopersici leaf spot of tomato with bacteria and yeasts,” Ciência Rural, vol. 30, no. 5, pp. 761–765, 2000. View at Publisher · View at Google Scholar
  8. E. A. Chatzivasileiadis and M. W. Sabelis, “Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch,” Experimental and Applied Acarology, vol. 21, no. 6-7, pp. 473–484, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, “Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1207–1216, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Tang and X. Wu, “Text-independent writer identification via CNN features and joint Bayesian,” in Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition, ICFHR 2016, pp. 566–571, Shenzhen, China, October 2016. View at Scopus
  11. Y. Tang and X. Wu, “Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 1608–05186, 2016.
  12. Y. Tang and X. Wu, “Salient object detection with chained multi-scale fully convolutional network,” ACM Multimedia (ACMMM), pp. 618–626, 2017. View at Publisher · View at Google Scholar
  13. Y. Tang and X. Wu, “Scene text detection and segmentation based on cascaded convolution neural networks,” IEEE Transactions on Image Processing, vol. 26, no. 3, pp. 1509–1520, 2017. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Tang and X. Wu, “Scene Text Detection using Superpixel based Stroke Feature Transform and Deep Learning based Region Classification,” IEEE Transactions on Multimedia, vol. 20, no. 9, pp. 2276–2288, 2018. View at Google Scholar · View at Scopus
  15. Y. Yao, X. Wu, Z. Lei, S. Shan, and W. Zuo, “Joint Representation and Truncated Inference Learning for Correlation Filter based Tracking,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 1–14, 2018.
  16. L. Zhang, F. Yang, Y. Daniel Zhang, and Y. J. Zhu, “Road crack detection using deep convolutional neural network,” in Proceedings of the 23rd IEEE International Conference on Image Processing, ICIP 2016, pp. 3708–3712, Phoenix, AZ, USA, September 2016. View at Scopus
  17. D. Xie, L. Zhang, and L. Bai, “Deep learning in visual computing and signal processing,” Applied Computational Intelligence and Soft Computing, vol. 2017, Article ID 1320780, 13 pages, 2017. View at Google Scholar · View at Scopus
  18. Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, and J. Liang, “Fine-tuning convolutional neural networks for biomedical image analysis: Actively and incrementally,” in Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 4761–4772, USA, July 2017. View at Scopus
  19. Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of the 15th IEEE International Conference on Computer Vision, ICCV 2015, pp. 3730–3738, Santiago, Chile, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Ouyang and X. Wang, “Joint deep learning for pedestrian detection,” in Proceedings of the 14th IEEE International Conference on Computer Vision (ICCV '13), pp. 2056–2063, Sydney, Australia, December 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS '12), pp. 1097–1105, Lake Tahoe, Nev, USA, December 2012. View at Scopus
  22. C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '15), pp. 1–9, IEEE, Boston, Mass, USA, June 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” https://arxiv.org/abs/1409.1556, 2015.
  24. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” https://arxiv.org/abs/1512.00567, 2015. View at Scopus
  25. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” https://arxiv.org/abs/1602.07261, 2016.
  26. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 770–778, July 2016. View at Scopus
  27. G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected convolutional networks,” in Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2016. View at Publisher · View at Google Scholar
  28. S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Mehdipour Ghazi, B. Yanikoglu, and E. Aptoula, “Plant identification using deep neural networks via optimization of transfer learning parameters,” Neurocomputing, vol. 235, pp. 228–235, 2017. View at Publisher · View at Google Scholar
  30. S. Ruder, “An overview of gradient descent optimization algorithms,” https://arxiv.org/abs/1609.04747, 2017.
  31. D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimization,” https://arxiv.org/abs/1412.6980, 2017.
  32. S. S. Sannakki, V. S. Rajpurohit, V. B. Nargund, R. Arun Kumar, and S. Prema Yallur, “Leaf disease grading by machine vision and fuzzy logic,” International Journal of Computer Technology and Applications, vol. 2, no. 5, pp. 1709–1716, 2011. View at Google Scholar
  33. D. Samanta, P. P. Chaudhury, and A. Ghosh, “Scab diseases detection of potato using image processing,” International Journal of Computer Trends and Technology, vol. 3, pp. 109–113, 2012. View at Google Scholar
  34. P. J. Herrera, J. Dorado, and Á. Ribeiro, “A novel approach for weed type classification based on shape descriptors and a fuzzy decision-making method,” Sensors, vol. 14, no. 8, pp. 15304–15324, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Cheng and E. T. Matson, “A feature-based machine learning agent for automatic rice and weed discrimination,” International Conference on Artificial Intelligence and Soft Computing, pp. 517–527, 2015. View at Google Scholar · View at Scopus
  36. S. Sankaran and R. Ehsani, “Comparison of visible-near infrared and mid-infrared spectroscopy for classification of Huanglongbing and citrus canker infected leaves,” Agricultural Engineering International: CIGR Journal, vol. 15, no. 3, pp. 75–79, 2013. View at Google Scholar · View at Scopus
  37. X. Cheng, Y. Zhang, Y. Chen, Y. Wu, and Y. Yue, “Pest identification via deep residual learning in complex background,” Computers and Electronics in Agriculture, vol. 141, pp. 351–356, 2017. View at Publisher · View at Google Scholar · View at Scopus
  38. A. dos Santos Ferreira, D. Matte Freitas, G. Gonçalves da Silva, H. Pistori, and M. Theophilo Folhes, “Weed detection in soybean crops using ConvNets,” Computers and Electronics in Agriculture, vol. 143, pp. 314–324, 2017. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic, “Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification,” Computational Intelligence and Neuroscience, vol. 2016, Article ID 3289801, 11 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  40. S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Frontiers in Plant Science, vol. 7, article no. 1419, 2016. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “Deepfruits: A fruit detection system using deep neural networks,” Sensors, vol. 16, article no. 1222, no. 8, 2016. View at Google Scholar · View at Scopus
  42. V. Nair and G. E. Hinton, “Rectified linear units improve Restricted Boltzmann machines,” in Proceedings of the 27th International Conference on Machine Learning (ICML '10), pp. 807–814, Haifa, Israel, June 2010. View at Scopus
  43. D. P. Hughes and M. Salathe, “An open access repository of images on plant health to enable the development of mobile disease diagnostics,” https://arxiv.org/abs/1511.08060, 2016.
  44. D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, “A committee of neural networks for traffic sign classification,” in Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN 2011 - San Jose), San Jose, CA, USA, July 2011. View at Publisher · View at Google Scholar
  45. P. Pawara, E. Okafor, O. Surinta, L. Schomaker, and M. Wiering, “Comparing Local Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for Plant Recognition,” in Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods, pp. 479–486, Porto, Portugal, Feburary 2017. View at Publisher · View at Google Scholar
  46. M. Lin, “Network in Nnetwork,” https://arxiv.org/abs/1312.4400, 2014.
  47. K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in Proceedings of the European Conference on Computer Vision, pp. 630–645, 2016. View at Publisher · View at Google Scholar
  48. L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning Research, vol. 9, pp. 2579–2625, 2008. View at Google Scholar · View at Scopus