Table of Contents Author Guidelines Submit a Manuscript
Advances in Medicine
Volume 2014 (2014), Article ID 429710, 15 pages
http://dx.doi.org/10.1155/2014/429710
Review Article

Transplantation of Encapsulated Pancreatic Islets as a Treatment for Patients with Type 1 Diabetes Mellitus

1Division of Transplantation/Department of Surgery, University of Illinois at Chicago, IL 60612, USA
2Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA

Received 21 August 2013; Accepted 30 November 2013; Published 30 January 2014

Academic Editor: Stefano La Rosa

Copyright © 2014 Meirigeng Qi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, “Immunologic self-tolerance maintained by activated T cells expressing IL- 2 receptor α-chains (CD25): breakdown of a single mechanism of self- tolerance causes various autoimmune diseases,” Journal of Immunology, vol. 155, no. 3, pp. 1151–1164, 1995. View at Google Scholar · View at Scopus
  2. S. Sakaguchi, “Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses,” Annual Review of Immunology, vol. 22, pp. 531–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. American Diabetes Association, http://www.diabetes.org.
  4. “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group,” The New England Journal of Medicine, vol. 329, pp. 977–986, 1993.
  5. E. F. M. Wijdicks, R. H. Wiesner, and R. A. F. Krom, “Neurotoxicity in liver transplant recipients with cyclosporine immunosuppression,” Neurology, vol. 45, no. 11, pp. 1962–1964, 1995. View at Google Scholar · View at Scopus
  6. A. C. Gruessner and D. E. R. Sutherland, “Pancreas transplant outcomes for United States (US) cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR),” Clinical Transplants, pp. 45–56, 2008. View at Google Scholar · View at Scopus
  7. A. C. Gruessner and D. E. R. Sutherland, “Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Prancreas Transplant Registry (IPTR) as of June 2004,” Clinical Transplantation, vol. 19, no. 4, pp. 433–455, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Mora Porta, M. J. Ricart, R. Casamitjana et al., “Pancreas and kidney transplantation: long-term endocrine function,” Clinical Transplantation, vol. 24, no. 6, pp. E236–E240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Demartines, M. Schiesser, and P. Clavien, “An evidence-based analysis of simultaneous pancreas-kidney and pancreas transplantation alone,” American Journal of Transplantation, vol. 5, no. 11, pp. 2688–2697, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Jahansouz, S. C. Kumer, M. Ellenbogen, and K. L. Brayman, “Evolution of β-cell replacement therapy in diabetes mellitus: pancreas transplantation,” Diabetes Technology and Therapeutics, vol. 13, no. 3, pp. 395–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Cohen, L. St. Martin, L. L. Christensen, R. D. Bloom, and R. S. Sung, “Kidney and pancreas transplantation in the United States, 1995–2004,” American Journal of Transplantation, vol. 6, no. 5, pp. 1153–1169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. R. Johnson and K. E. Jones, “Pancreatic islet transplantation,” Seminars in Pediatric Surgery, vol. 21, pp. 272–280, 2012. View at Google Scholar
  13. R. C. Gaba, R. Garcia-Roca, and J. Oberholzer, “Pancreatic islet cell transplantation: an update for interventional radiologists,” Journal of Vascular and Interventional Radiology, vol. 23, no. 5, pp. 583–594, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. W. F. Ballinger and P. E. Lacy, “Transplantation of intact pancreatic islets in rats,” Surgery, vol. 72, no. 2, pp. 175–186, 1972. View at Google Scholar · View at Scopus
  15. P. Soon-Shiong, R. E. Heintz, N. Merideth et al., “Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation,” The Lancet, vol. 343, no. 8903, pp. 950–951, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. D. W. Scharp, C. J. Swanson, B. J. Olack et al., “Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects,” Diabetes, vol. 43, no. 9, pp. 1167–1170, 1994. View at Google Scholar · View at Scopus
  17. R. Calafiore, G. Basta, G. Luca et al., “Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes,” Diabetes Care, vol. 29, no. 1, pp. 137–138, 2006. View at Google Scholar · View at Scopus
  18. B. E. Tuch, G. W. Keogh, L. J. Williams et al., “Safety and viability of microencapsulated human islets transplanted into diabetic humans,” Diabetes Care, vol. 32, no. 10, pp. 1887–1889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Jacobs-Tulleneers-Thevissen, M. Chintinne, Z. Ling et al., “Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient,” Diabetologia, vol. 56, pp. 1605–1614, 2013. View at Google Scholar
  20. E. A. Ryan, B. W. Paty, P. A. Senior et al., “Five-year follow-up after clinical islet transplantation,” Diabetes, vol. 54, no. 7, pp. 2060–2069, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. D. Bellin, F. B. Barton, A. Heitman et al., “Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes,” American Journal of Transplantation, vol. 12, pp. 1576–1583, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. A. A. Rossini, “Autoimmune diabetes and the circle of tolerance,” Diabetes, vol. 53, no. 2, pp. 267–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Worcester Human Islet Transplantation, “Autoimmunity after islet-cell allotransplantation,” The New England Journal of Medicine, vol. 355, pp. 1397–1399, 2006. View at Google Scholar
  24. R. Hilbrands, V. A. L. Huurman, P. Gillard et al., “Differences in baseline lymphocyte counts and autoreactivity are associated with differences in outcome of islet cell transplantation in type 1 diabetic patients,” Diabetes, vol. 58, no. 10, pp. 2267–2276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Carlsson, F. Palm, A. Andersson, and P. Liss, “Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site,” Diabetes, vol. 50, no. 3, pp. 489–495, 2001. View at Google Scholar · View at Scopus
  26. N. R. Barshes, S. Wyllie, and J. A. Goss, “Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts,” Journal of Leukocyte Biology, vol. 77, no. 5, pp. 587–597, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Bennet, B. Sundberg, C. Groth et al., “Incompatibility between human blood and isolated islets of langerhans: a finding with implications for clinical intraportal islet transplantation?” Diabetes, vol. 48, no. 10, pp. 1907–1914, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Özmen, K. N. Ekdahl, G. Elgue, R. Larsson, O. Korsgren, and B. Nilsson, “Inhibition of thrombin abrogates the instant blood-mediated inflammatory reaction triggered by isolated human islets: possible application of the thrombin inhibitor Melagatran in clinical islet transplantation,” Diabetes, vol. 51, no. 6, pp. 1779–1784, 2002. View at Google Scholar · View at Scopus
  29. H. Johansson, A. Lukinius, L. Moberg et al., “Tissue factor produced by the endocrine cells of the islets of langerhans is associated with a negative outcome of clinical islet transplantation,” Diabetes, vol. 54, no. 6, pp. 1755–1762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Rabinovitch and W. L. Suarez-Pinzon, “Cytokines and their roles in pancreatic islet β-cell destruction and insulin-dependent diabetes mellitus,” Biochemical Pharmacology, vol. 55, no. 8, pp. 1139–1149, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. R. T. Prehn, J. M. Weaver, and G. H. Algire, “The diffusion-chamber technique applied to a study of the nature of homograft resistance,” Journal of the National Cancer Institute, vol. 15, no. 3, pp. 509–517, 1954. View at Google Scholar · View at Scopus
  32. J. Koo and T. M. S. Chang, “Secretion of erythropoietin from microencapsulated rat kidney cells: preliminary results,” International Journal of Artificial Organs, vol. 16, no. 7, pp. 557–560, 1993. View at Google Scholar · View at Scopus
  33. T. M. S. Chang, “Semipermeable microcapsules,” Science, vol. 146, no. 3643, pp. 524–525, 1964. View at Google Scholar · View at Scopus
  34. D. A. Cieslinski and H. D. Humes, “Tissue engineering of a bioartificial kidney,” Biotechnology and Bioengineering, vol. 43, no. 7, pp. 678–681, 1994. View at Google Scholar · View at Scopus
  35. H. Wong and T. M. S. Chang, “Bioartificial liver: implanted artificial cells microencapsulated living hepatocytes increases survival of liver failure rats,” International Journal of Artificial Organs, vol. 9, no. 5, pp. 335–336, 1986. View at Google Scholar · View at Scopus
  36. P. Aebischer, M. Goddard, A. P. Signore, and R. L. Timpson, “Functional recovery in hemiparkinsonian primates transplanted with polymer-encapsulated PC12 cells,” Experimental Neurology, vol. 126, no. 2, pp. 151–158, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Foster, G. Williams, L. J. Williams, and B. E. Tuch, “Differentiation of transplanted microencapsulated fetal pancreatic cells,” Transplantation, vol. 83, no. 11, pp. 1440–1448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Meyer, B. Höcht, and K. Ulrichs, “Xenogeneic islet transplantation of microencapsulated porcine islets for therapy of type I diabetes: long-term normoglycemia in STZ-diabetic rats without immunosuppression,” Pediatric Surgery International, vol. 24, no. 12, pp. 1375–1378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Wang, J. Adcock, W. Kühtreiber et al., “Successful allotransplantation of encapsulated islets in pancreatectomized canines for diabetic management without the use of immunosuppression,” Transplantation, vol. 85, no. 3, pp. 331–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. A. G. Abalovich, M. C. Bacqué, D. Grana, and J. Milei, “Pig pancreatic islet transplantation into spontaneously diabetic dogs,” Transplantation Proceedings, vol. 41, no. 1, pp. 328–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Dufrane, R. Goebbels, A. Saliez, Y. Guiot, and P. Gianello, “Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept,” Transplantation, vol. 81, no. 9, pp. 1345–1353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. R. B. Elliott, L. Escobar, R. Calafiore et al., “Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys,” Transplantation Proceedings, vol. 37, no. 1, pp. 466–469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. Living Cell Technologies. DIABECELL, http://www.lctglobal.com/Products-and-Services/Diabecell.
  44. R. P. Lanza, J. L. Hayes, and W. L. Chick, “Encapsulated cell technology,” Nature Biotechnology, vol. 14, no. 9, pp. 1107–1111, 1996. View at Google Scholar · View at Scopus
  45. D. W. Scharp, N. S. Mason, and R. E. Sparks, “Islet immuno-isolation: the use of hybrid artificial organs to prevent islet tissue rejection,” World Journal of Surgery, vol. 8, no. 2, pp. 221–229, 1984. View at Google Scholar · View at Scopus
  46. C. K. Colton and E. S. Avgoustiniatos, “Bioengineering in development of the hybrid artificial pancreas,” Journal of Biomechanical Engineering, vol. 113, no. 2, pp. 152–170, 1991. View at Google Scholar · View at Scopus
  47. W. L. Chick, A. A. Like, and V. Lauris, “Beta cell culture on synthetic capillaries: an artificial endocrine pancreas,” Science, vol. 187, no. 4179, pp. 847–849, 1975. View at Google Scholar · View at Scopus
  48. T. Maki, J. P. A. Lodge, M. Carretta et al., “Treatment of severe diabetes mellitus for more than one year using a vascularized hybrid artificial pancreas,” Transplantation, vol. 55, no. 4, pp. 713–718, 1993. View at Google Scholar · View at Scopus
  49. T. Maki, I. Otsu, J. J. O'Neil et al., “Treatment of diabetes by xenogeneic islets without immunosuppression: use of a vascularized bioartificial pancreas,” Diabetes, vol. 45, no. 3, pp. 342–347, 1996. View at Google Scholar · View at Scopus
  50. K. Tatarkiewicz, J. Hollister-Lock, R. R. Quickel, C. K. Colton, S. Bonner-Weir, and G. C. Weir, “Reversal of hyperglycemia in mice after subcutaneous transplantation of macroencapsulated islets,” Transplantation, vol. 67, no. 5, pp. 665–671, 1999. View at Google Scholar · View at Scopus
  51. W. Wang, Y. Gu, H. Hori et al., “Subcutaneous transplantation of macroencapsulated porcine pancreatic endocrine cells normalizes hyperglycemia in diabetic mice,” Transplantation, vol. 76, no. 2, pp. 290–296, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Aung, M. Kogire, K. Inoue et al., “Insulin release from a bioartificial pancreas using a mesh reinforced polyvinyl alcohol hydrogel tube: an in vitro study,” ASAIO Journal, vol. 39, no. 2, pp. 93–96, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Aung, K. Inoue, M. Kogire et al., “Comparison of various gels for immobilization of islets in bioartificial pancreas using a mesh-reinforced polyvinyl alcohol hydrogel tube,” Transplantation Proceedings, vol. 27, no. 1, pp. 619–621, 1995. View at Google Scholar · View at Scopus
  54. H. Hayashi, K. Inoue, T. Aung et al., “Long survival of xenografted bioartificial pancreas with a mesh-reinforced polyvinyl alcohol hydrogel bag employing a B-cell line (MIN6),” Transplantation Proceedings, vol. 28, no. 3, pp. 1428–1429, 1996. View at Google Scholar · View at Scopus
  55. M. Qi, Y. Gu, N. Sakata et al., “PVA hydrogel sheet macroencapsulation for the bioartificial pancreas,” Biomaterials, vol. 25, no. 27, pp. 5885–5892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Storrs, R. Dorian, S. R. King, J. Lakey, and H. Rilo, “Preclinical development of the Islet Sheet,” Annals of the New York Academy of Sciences, vol. 944, pp. 252–266, 2001. View at Google Scholar · View at Scopus
  57. TheraCyte, http://www.theracyte.com/TheTechnology.htm.
  58. A. K. Sörenby, M. Kumagai-Braesch, A. Sharma, K. R. Hultenby, A. M. Wernerson, and A. B. Tibell, “Preimplantation of an immunoprotective device can lower the curative dose of islets to that of free islet transplantation-studies in a rodent model,” Transplantation, vol. 86, no. 2, pp. 364–366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Kumagai-Braesch, S. Jacobson, H. Mori et al., “The TheraCyte device protects against islet allograft rejection in immunized hosts,” Cell Transplantation, vol. 22, pp. 1137–1146, 2013. View at Google Scholar
  60. P. de Vos, M. M. Faas, B. Strand, and R. Calafiore, “Alginate-based microcapsules for immunoisolation of pancreatic islets,” Biomaterials, vol. 27, no. 32, pp. 5603–5617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Iwata, H. Amemiya, T. Matsuda, H. Takano, R. Hayashi, and T. Akutsu, “Evaluation of microencapsulated islets in agarose gel as bioartificial pancreas by studies of hormone secretion in culture and by xenotransplantation,” Diabetes, vol. 38, supplement 1, pp. 224–225, 1989. View at Google Scholar · View at Scopus
  62. B. A. Zielinski and P. Aebischer, “Chitosan as a matrix for mammalian cell encapsulation,” Biomaterials, vol. 15, no. 13, pp. 1049–1056, 1994. View at Publisher · View at Google Scholar · View at Scopus
  63. G. M. Cruise, O. D. Hegre, F. V. Lamberti et al., “In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes,” Cell Transplantation, vol. 8, no. 3, pp. 293–306, 1999. View at Google Scholar · View at Scopus
  64. O. Smidsrød and G. Skjåk-Bræk, “Alginate as immobilization matrix for cells,” Trends in Biotechnology, vol. 8, pp. 71–78, 1990. View at Google Scholar
  65. A. Haug, B. Larsen, and O. Smidsrød, “A study of the constitution of alginic acid by partial hydrolysis,” Acta Chemica Scandinavica, vol. 20, pp. 183–190, 1966. View at Google Scholar
  66. G. T. Grant, E. R. Morris, and D. A. Rees, “Biological interactions between polysaccharides and divalent cations: the egg box model,” FEBS Letters, vol. 32, no. 1, pp. 195–198, 1973. View at Publisher · View at Google Scholar · View at Scopus
  67. G. M. R. Vandenbossche, M. E. Bracke, C. A. Cuvelier, H. E. Bortier, M. M. Mareel, and J.-P. Remon, “Host reaction against alginate-polylysine microcapsules containing living cells,” Journal of Pharmacy and Pharmacology, vol. 45, no. 2, pp. 121–125, 1993. View at Google Scholar · View at Scopus
  68. B. Thu, P. Bruheim, T. Espevik, O. Smidsrød, P. Soon-Shiong, and G. Skjåk-Bræk, “Alginate polycation microcapsules: i. Interaction between alginate and polycation,” Biomaterials, vol. 17, no. 10, pp. 1031–1040, 1996. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Thu, P. Bruheim, T. Espevik, O. Smidsrød, P. Soon-Shiong, and G. Skjåk-Bræk, “Alginate polycation microcapsules: iI. Some functional properties,” Biomaterials, vol. 17, no. 11, pp. 1069–1079, 1996. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Kulseng, B. Thu, T. Espevik, and G. Skjåk-Bræk, “Alginate polylysine microcapsules as immune barrier: permeability of cytokines and immunoglobulins over the capsule membrane,” Cell Transplantation, vol. 6, no. 4, pp. 387–394, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Thu, Alginate polycation microcapsules: a study of some molecular and functional properties relevant to their use as bioartificial pancreas [thesis], NTNU, Trondheim, Norway, 1996.
  72. D. S. Luciani, S. Misler, and K. S. Polonsky, “Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets,” Journal of Physiology, vol. 572, no. 2, pp. 379–392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Pørksen, M. Hollingdal, C. Juhl, P. Butler, J. D. Veldhuis, and O. Schmitz, “Pulsatile insulin secretion: detection, regulation, and role in diabetes,” Diabetes, vol. 51, supplement 1, pp. S245–S254, 2002. View at Google Scholar · View at Scopus
  74. C. Warnotte, P. Gilon, M. Nenquin, and J. Henquin, “Mechanisms of the stimulation of insulin release by saturated fatty acids: a study of palmitate effects in mouse β-cells,” Diabetes, vol. 43, no. 5, pp. 703–711, 1994. View at Google Scholar · View at Scopus
  75. J. C. Henquin, W. Schmeer, M. Nenquin, and H. P. Meissner, “Effects of a calcium channel agonist on the electrical, ionic and secretory events in mouse pancreatic B-cells,” Biochemical and Biophysical Research Communications, vol. 131, no. 2, pp. 980–986, 1985. View at Google Scholar · View at Scopus
  76. A. P. Babenko, L. Aguilar-Bryan, and J. Bryan, “A view of SUR/K(IR)6.X, k(atp) channels,” Annual Review of Physiology, vol. 60, pp. 667–687, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. M. W. Roe, J. F. Worley III, Y. Tokuyama et al., “NIDDM is associated with loss of pancreatic β-cell L-type Ca2+ channel activity,” American Journal of Physiology—Endocrinology and Metabolism, vol. 270, no. 1, pp. E133–E140, 1996. View at Google Scholar · View at Scopus
  78. M. Gembal, P. Gilon, and J.-C. Henquin, “Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells,” The Journal of Clinical Investigation, vol. 89, no. 4, pp. 1288–1295, 1992. View at Google Scholar · View at Scopus
  79. S. G. Straub and G. W. G. Sharp, “Glucose-stimulated signaling pathways in biphasic insulin secretion,” Diabetes/Metabolism Research and Reviews, vol. 18, no. 6, pp. 451–463, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Henquin, M. Nenquin, P. Stiernet, and B. Ahren, “In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in β-cells,” Diabetes, vol. 55, no. 2, pp. 441–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Komjati, P. Bratusch-Marrain, and W. Waldhausl, “Superior efficacy of pulsatile versus continuous hormone exposure on hepatic glucose production in vitro,” Endocrinology, vol. 118, no. 1, pp. 312–319, 1986. View at Google Scholar · View at Scopus
  82. D. Chicheportiche and G. Reach, “In vitro kinetics of insulin release by microencapsulated rat islets: effect of the size of the microcapsules,” Diabetologia, vol. 31, no. 1, pp. 54–57, 1988. View at Google Scholar · View at Scopus
  83. R. Barrientos, S. Baltrusch, S. Sigrist, G. Legeay, A. Belcourt, and S. Lenzen, “Kinetics of insulin secretion from MIN6 pseudoislets after encapsulation in a prototype device of a bioartificial pancreas,” Hormone and Metabolic Research, vol. 41, no. 1, pp. 5–9, 2009. View at Google Scholar · View at Scopus
  84. S. Baltrusch and S. Lenzen, “Novel insights into the regulation of the bound and diffusible glucokinase in MIN6 β-cells,” Diabetes, vol. 56, no. 5, pp. 1305–1315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. J. S. Mohammed, Y. Wang, T. A. Harvat, J. Oberholzer, and D. T. Eddington, “Microfluidic device for multimodal characterization of pancreatic islets,” Lab on a Chip, vol. 9, no. 1, pp. 97–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. A. F. Adewola, D. Lee, T. Harvat et al., “Microfluidic perifusion and imaging device for multi-parametric islet function assessment,” Biomedical Microdevices, vol. 12, no. 3, pp. 409–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Lee, Y. Wang, J. E. Mendoza-Elias et al., “Dual microfluidic perifusion networks for concurrent islet perifusion and optical imaging,” Biomedical Microdevices, vol. 14, no. 1, pp. 7–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Remes and D. F. Williams, “Immune response in biocompatibility,” Biomaterials, vol. 13, no. 11, pp. 731–743, 1992. View at Publisher · View at Google Scholar · View at Scopus
  89. D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. Z. Lifeng, H. Yan, Y. Dayun et al., “The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys,” Biomedical Materials, vol. 6, no. 2, Article ID 025012, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. D. L. Coleman, R. N. King, and J. D. Andrade, “The foreign body reaction: a chronic inflammatory response,” Journal of Biomedical Materials Research, vol. 8, no. 5, pp. 199–211, 1974. View at Google Scholar · View at Scopus
  92. J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Seminars in Immunology, vol. 20, no. 2, pp. 86–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. M. J. A. van Luyn, J. A. Plantinga, L. A. Brouwer, I. M. S. L. Khouw, L. F. M. H. de Leij, and P. B. van Wachem, “Repetitive subcutaneous implantation of different types of (biodegradable) biomaterials alters the foreign body reaction,” Biomaterials, vol. 22, no. 11, pp. 1385–1391, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. B. C. Jham, N. G. Nikitakis, M. A. Scheper, J. C. Papadimitriou, B. A. Levy, and H. Rivera, “Granulomatous foreign-body reaction involving oral and perioral tissues after injection of biomaterials: a series of 7 cases and review of the literature,” Journal of Oral and Maxillofacial Surgery, vol. 67, no. 2, pp. 280–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. J. M. Anderson, “Inflammatory response to implants,” ASAIO Transactions, vol. 34, no. 2, pp. 101–107, 1988. View at Google Scholar · View at Scopus
  96. A. Rosengren, L. M. Bjursten, and N. Danielsen, “Analysis of the inflammatory response to titanium and PTFE implants in soft tissue by macrophage phenotype quantification,” Journal of Materials Science, vol. 9, no. 7, pp. 415–420, 1998. View at Publisher · View at Google Scholar · View at Scopus
  97. C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: a review,” Tissue Engineering, vol. 11, no. 1-2, pp. 1–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. M. B. Gorbet and M. V. Sefton, “Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes,” Biomaterials, vol. 25, no. 26, pp. 5681–5703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. B. G. Keselowsky, A. W. Bridges, K. L. Burns et al., “Role of plasma fibronectin in the foreign body response to biomaterials,” Biomaterials, vol. 28, no. 25, pp. 3626–3631, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. I. M. Khouw, P. B. van Wachem, R. J. van der Worp, T. K. van den Berg, L. F. de Leij, and M. J. van Luyn, “Systemic anti-IFN-gamma treatment and role of macrophage subsets in the foreign body reaction to dermal sheep collagen in rats,” Journal of Biomedical Materials Research, vol. 49, pp. 297–304, 2000. View at Google Scholar
  102. J. A. Jones, D. T. Chang, H. Meyerson et al., “Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells,” Journal of Biomedical Materials Research A, vol. 83, no. 3, pp. 585–596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. A. K. McNally and J. M. Anderson, “Macrophage fusion and multinucleated giant cells of inflammation,” Advances in Experimental Medicine and Biology, vol. 713, pp. 97–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. D. M. Mosser, “The many faces of macrophage activation,” Journal of Leukocyte Biology, vol. 73, no. 2, pp. 209–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. S. M. van Putten, M. Wübben, W. E. Hennink, M. J. A. van Luyn, and M. C. Harmsen, “The downmodulation of the foreign body reaction by cytomegalovirus encoded interleukin-10,” Biomaterials, vol. 30, no. 5, pp. 730–735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. P. Falk, E. Angenete, M. Bergstrom, and M. L. Ivarsson, “TGF-beta1 promotes transition of mesothelial cells into fibroblast phenotype in response to peritoneal injury in a cell culture model,” International Journal of Surgery, vol. 11, no. 9, pp. 977–982, 2013. View at Google Scholar
  107. J. Donovan, X. Shiwen, J. Norman, and D. Abraham, “Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts,” Fibrogenesis & Tissue Repair, vol. 6, article 10, 2013. View at Google Scholar
  108. S. Yamashiro, H. Kamohara, J. Wang, D. Yang, W. Gong, and T. Yoshimura, “Phenotypic and functional change of cytokine-activated neutrophils: inflammatory neutrophils are heterogeneous and enhance adaptive immune responses,” Journal of Leukocyte Biology, vol. 69, no. 5, pp. 698–704, 2001. View at Google Scholar · View at Scopus
  109. P. de Vos, C. G. van Hoogmoed, J. van Zanten, S. Netter, J. H. Strubbe, and H. J. Busscher, “Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets,” Biomaterials, vol. 24, no. 2, pp. 305–312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Qi, I. Lacik, G. Kolláriková et al., “A recommended laparoscopic procedure for implantation of microcapsules in the peritoneal cavity of non-human primates,” Journal of Surgical Research, vol. 168, no. 1, pp. e117–e123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Toso, J. Oberholzer, I. Ceausoglu et al., “Intra-portal injection of 400-μm microcapsules in a large-animal model,” Transplant International, vol. 16, no. 6, pp. 405–410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Soon-Shiong, E. Feldman, R. Nelson et al., “Long-term reversal of diabetes by the injection of immunoprotected islets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 12, pp. 5843–5847, 1993. View at Google Scholar · View at Scopus
  113. R. Calafiore, G. Basta, G. Luca et al., “Transplantation of allogeneic/xenogeneic pancreatic islets containing coherent microcapsules in adult pigs,” Transplantation Proceedings, vol. 30, no. 2, pp. 482–483, 1998. View at Publisher · View at Google Scholar · View at Scopus
  114. R. Calafiore, G. Basta, G. Luca et al., “Transplantation of pancreatic islets contained in minimal volume microcapsules in diabetic high mammalians,” Annals of the New York Academy of Sciences, vol. 875, pp. 219–232, 1999. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. Sun, X. Ma, D. Zhou, I. Vacek, and A. M. Sun, “Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression,” The Journal of Clinical Investigation, vol. 98, no. 6, pp. 1417–1422, 1996. View at Google Scholar · View at Scopus
  116. D. Dufrane, R. Goebbels, and P. Gianello, “Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression,” Transplantation, vol. 90, no. 10, pp. 1054–1062, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Veriter, P. Gianello, Y. Igarashi et al., “Improvement of subcutaneous bioartificial pancreas vascularization and function by co-encapsulation of pig islets and mesenchymal stem cells in primates,” Cell Transplantation, 2013. View at Publisher · View at Google Scholar
  118. S. K. Tam, J. Dusseault, S. Polizu, M. Ménard, J. Hallé, and L. Yahia, “Impact of residual contamination on the biofunctional properties of purified alginates used for cell encapsulation,” Biomaterials, vol. 27, no. 8, pp. 1296–1305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Figliuzzi, T. Plati, R. Cornolti et al., “Biocompatibility and function of microencapsulated pancreatic islets,” Acta Biomaterialia, vol. 2, no. 2, pp. 221–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. P. de Vos, B. de Haan, and R. van Schilfgaarde, “Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules,” Biomaterials, vol. 18, no. 3, pp. 273–278, 1997. View at Publisher · View at Google Scholar · View at Scopus
  121. Z. Mathe, P. Bucher, D. Bosco et al., “Short-term immunosuppression reduces fibrotic cellular infiltration around Barium-M-alginate microbeads injected intraportally,” Transplantation Proceedings, vol. 36, no. 4, pp. 1199–1200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. M. de Groot, T. A. Schuurs, and R. van Schilfgaarde, “Causes of limited survival of microencapsulated pancreatic islet grafts,” Journal of Surgical Research, vol. 121, no. 1, pp. 141–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. J. Y. Jang, D. Y. Lee, S. J. Park, and Y. Byun, “Immune reactions of lymphocytes and macrophages against PEG-grafted pancreatic islets,” Biomaterials, vol. 25, no. 17, pp. 3663–3669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. J. Su, B. Hu, W. L. Lowe Jr., D. B. Kaufman, and P. B. Messersmith, “Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation,” Biomaterials, vol. 31, no. 2, pp. 308–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Charles, L. Lu, S. Qian, and J. J. Fung, “Stromal cell-based immunotherapy in transplantation,” Immunotherapy, vol. 3, no. 12, pp. 1471–1485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. G. S. Korbutt, J. F. Elliott, and R. V. Rajotte, “Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression,” Diabetes, vol. 46, no. 2, pp. 317–322, 1997. View at Google Scholar · View at Scopus
  127. J. M. Dufour, R. V. Rajotte, T. Kin, and G. S. Korbutt, “Immunoprotection of rat islet xenografts by cotransplantation with Sertoli cells and a single injection of antilymphocyte serum,” Transplantation, vol. 75, no. 9, pp. 1594–1596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. H. Yang and J. R. Wright Jr., “Co-encapsulation of sertoli enriched testicular cell fractions further prolongs fish-to-mouse islet xenograft survival,” Transplantation, vol. 67, no. 6, pp. 815–820, 1999. View at Google Scholar · View at Scopus
  129. G. S. Korbutt, W. L. Suarez-Pinzon, R. F. Power, R. V. Rajotte, and A. Rabinovitch, “Testicular Sertoli cells exert both protective and destructive effects on syngeneic islet grafts in non-obese diabetic mice,” Diabetologia, vol. 43, no. 4, pp. 474–480, 2000. View at Google Scholar · View at Scopus
  130. G. Luca, R. Calafiore, G. Basta et al., “Improved function of rat islets upon co-microencapsulation with Sertoli's cells in alginate/poly-L-ornithine,” AAPS PharmSciTech, vol. 2, no. 3, p. E15, 2001. View at Google Scholar · View at Scopus
  131. G. Basta, P. Montanucci, G. Luca et al., “Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases,” Diabetes care, vol. 34, no. 11, pp. 2406–2409, 2011. View at Google Scholar · View at Scopus
  132. R. B. Elliott, L. Escobar, P. L. J. Tan, M. Muzina, S. Zwain, and C. Buchanan, “Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation,” Xenotransplantation, vol. 14, no. 2, pp. 157–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. Cell Pouch System, http://www.sernova.com.
  134. C. G. Groth, “Transplantation of porcine fetal pancreas to diabetic patients,” The Lancet, vol. 345, no. 8951, p. 735, 1995. View at Google Scholar · View at Scopus
  135. C. G. Groth, O. Korsgren, A. Tibell et al., “Transplantation of porcine fetal pancreas to diabetic patients,” The Lancet, vol. 344, no. 8934, pp. 1402–1404, 1994. View at Publisher · View at Google Scholar · View at Scopus
  136. R. A. Valdés-González, L. M. Dorantes, G. N. Garibay et al., “Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study,” European Journal of Endocrinology, vol. 153, no. 3, pp. 419–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. A. T. Cheung, B. Dayanandan, J. T. Lewis et al., “Glucose-dependent insulin release from genetically engineered K cells,” Science, vol. 290, no. 5498, pp. 1959–1962, 2000. View at Publisher · View at Google Scholar · View at Scopus
  138. B. Bose, S. P. Shenoy, S. Konda, and P. Wangikar, “Human embryonic stem cell differentiation into insulin secreting beta-cells for diabetes,” Cell Biology International, vol. 36, pp. 1013–1020, 2012. View at Google Scholar
  139. K. R. Prabakar, J. Dominguez-Bendala, R. D. Molano et al., “Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells,” Cell Transplantation, vol. 21, pp. 1321–1339, 2012. View at Google Scholar
  140. C. L. Basford, K. J. Prentice, A. B. Hardy et al., “The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells,” Diabetologia, vol. 55, no. 2, pp. 358–371, 2012. View at Publisher · View at Google Scholar · View at Scopus
  141. B. E. Tuch, T. C. Hughes, and M. D. M. Evans, “Encapsulated pancreatic progenitors derived from human embryonic stem cells as a therapy for insulin-dependent diabetes,” Diabetes/Metabolism Research and Reviews, vol. 27, no. 8, pp. 928–932, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. S. K. Dean, Y. Yulyana, G. Williams, K. S. Sidhu, and B. E. Tuch, “Differentiation of encapsulated embryonic stem cells after transplantation,” Transplantation, vol. 82, no. 9, pp. 1175–1184, 2006. View at Publisher · View at Google Scholar · View at Scopus