Advances in Meteorology
 Journal metrics
See full report
Acceptance rate14%
Submission to final decision121 days
Acceptance to publication18 days
CiteScore4.600
Journal Citation Indicator0.490
Impact Factor2.9

Ultraviolet Radiation Quasi-Periodicities and Their Possible Link with the Cosmic Ray and Solar Interplanetary Data

Read the full article

 Journal profile

Advances in Meteorology publishes research in all areas of meteorology and climatology. Topics include forecasting techniques and applications, meteorological modelling, data analysis, atmospheric chemistry and physics, and climate change.

 Editor spotlight

Dr Jamie Cleverly, the journal’s Chief Editor, is based at James Cook University in Cairns, Australia. Their research interests include carbon, water and energy fluxes of arid-land Acacia swales; physics of the atmospheric surface layer and interactions with terrestrial ecosystems.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Power Data Access Viewer-Based Meteorological Drought Analysis and Rainfall Variability in the Nile River Basin

Meteorological drought poses a frequent challenge in the Nile River basin, yet its comprehensive evaluation across the basin has been hindered by insufficient recorded rainfall data. Common indices like the standard precipitation index, coefficients of variation, and precipitation concentration index serve as pivotal tools in gauging drought severity. This research aimed to assess the meteorological drought status in the Nile River basin by using the Power Data Access Viewer product rainfall data. Bias correction procedures were implemented to refine the monthly rainfall data for Bahirdar, Markos, Nekemt, and Muger stations, resulting in notable improvements in the coefficient of determination () that were increased from 0.74 to 0.93, 0.72 to 0.89, 0.71 to 0.96, and 0.69 to 0.84, respectively. The average spatial distribution of drought in the Nile basin was classified as extremely wet (3.81%), severely wet (9.01%), moderately wet (7.36%), near normal (9.97%), moderately drought (21.20%), severely drought (17.11%), and extremely drought (31.54%). Approximately 10.33% of the Nile River basin was situated in regions characterized by high rainfall variability, while around 21.17% was located in areas with a notably irregular precipitation concentration index. Overall, this study sheds light on the prevailing meteorological drought patterns in the Nile River basin, emphasizing the significance of understanding and managing these phenomena for the sustainable development of the region.

Research Article

False Alarm Causes and Wind Field Sensitivity Analysis of a Severe Rainfall Event in the Guangdong-Hong Kong-Macao Greater Bay Area Urban Cluster

On May 11, 2022, despite the favorable upper and lower-level circulation patterns of the high-altitude trough, shear line, and southwest jet stream, the urban cluster of the Guangdong-Hong Kong-Macao Greater Bay Area experienced light to moderate rainfall, deviating significantly from the forecasted heavy rain and local heavy rainstorm. This study explores the reasons for false alarms and predictability using ground observation data, radar data, ECMWF-ERA5 reanalysis field data, and ECMWF and CMA-TRAMS forecast data. The results indicate that the warm and moist airflow transported by the low-level jet stream was intercepted by the upstream MCS (mesoscale convective system) along the coastal area of western Guangdong, and inadequate conditions of negative vorticity dynamics led to insufficient moisture, thermodynamic, and dynamic conditions over the urban cluster, preventing the triggering of heavy precipitation. In addition, the 700 hPa westerly flow guiding the airflow and the stable low-level shear line, coupled with surface convergence lines, influenced the northward or southward movement of MCSs along the coastal and inland regions of western Guangdong. The weak and discontinuous intensity of echoes in the upstream Zhaoqing region further hindered the influence of surrounding echoes on the urban cluster. Numerical forecast models ECMWF and CMA-TRAMS overestimated the 850 hPa windspeed and 925 hPa meridional windspeed, resulting in the forecasted urban cluster experiencing heavy rain. Sensitivity tests of wind fields indicate that the 850 hPa wind field information is more sensitive to precipitation in the urban cluster. In this process, weak signal correction can be achieved in strong precipitation forecasts using the distinct signal of lower 850 hPa water vapor flux divergence compared to 925 hPa. Therefore, in the future, when the Guangdong-Hong Kong-Macao Greater Bay Area encounters similar warm-sector heavy rainfall events, adjustments to model forecasts can be made using specific 850 hPa elements such as wind speed, water vapor flux divergence, or specific humidity to enhance predictive accuracy.

Research Article

Application of wetPf2 Data for Investigating Characteristics of Temperature and Humidity of Air Masses over Paracel and Spratly Islands

This article uses data from the second-generation Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2) satellites (wetPf2) to study the temperature and humidity properties of the air masses over Paracel and Spratly Islands in the Vietnam East Sea (South China Sea). The satellite observational data were validated with the radiosonde data from three stations in Vietnam: Hanoi, Danang, and Ho Chi Minh City. Subsequently, the wetPf2 data are used to analyze the characteristics of temperature and relative humidity variations of the air masses over the Paracel and Spratly regions. Results show that the mean error of the satellite observational data for temperature ranges from −0.06°C to −0.02°C, with standard deviations ranging from 0.73°C to 1.04°C. The mean error of relative humidity fluctuates between 11.6% and 12.5%, with standard deviations ranging from 15.1% to 19.1%. The values are reasonable and comparable to those in previous studies. Seasonal variations of temperature and humidity show that the air mass over the Paracel Islands exhibits a larger annual temperature with an annual variation of approximately 5.0°C, significantly higher than the value of 2.2°C in the air mass over the Spratly Islands. The difference may be due to the greater influence of continental and seasonal wind systems in the northern region. Within both air masses, the annual temperature variation in the boundary layer is much larger than that in the free atmosphere. Annual relative humidity variation is higher in summer and autumn than in winter and spring. The significant changes in the relative humidity with height during winter and no significant change of the relative humidity with height during summer may be related to the important role of strong convective activity carrying moist air upward to higher atmospheric levels during the summer time.

Research Article

Information Entropy-Based Hybrid Models Improve the Accuracy of Reference Evapotranspiration Forecast

Accurate forecasting of reference crop evapotranspiration (ET0) is vital for sustainable water resource management. In this study, four popularly used single models were selected to forecast ET0 values, including support vector regression, Bayesian linear regression, ridge regression, and lasso regression models, respectively. They all had advantages of low requirement of data input and good capability of data fitting. However, forecast errors inevitably existed in those forecasting models due to data noise or overfitting. In order to improve the forecast accuracy of models, hybrid models were proposed to integrate the advantages of the single models. Before the construction of hybrid models, each single model’s weight was determined based on two weight determination methods, namely, the variance reciprocal and information entropy weighting methods. To validate the accuracy of the proposed hybrid models, 1–30 d forecast data from January 2 to February 1, 2022, were used as a test set in Xinxiang, North China Plain. The results confirmed the feasibility of the information entropy-based hybrid model. In detail, the information entropy model generated the mean absolute percentage errors of 11.9% or a decrease by 48.9% compared to the single and variance reciprocal hybrid models. Moreover, the model generated a correlation coefficient of 0.90 for 1–30 d ET0 forecasting or an increase by 13.6% compared to other models. The standard deviation and the root mean square error of the information entropy model were 1.65 mm·d−1 and 0.61 mm·d−1 or had a decrease by 16.4% and 23.7%. The maximum precision and the F1 score were 0.9618 and 0.9742 for the information entropy model. It was concluded that the information entropy-based hybrid model had the best midterm (1–30 d) ET0 forecasting performance in the North China Plain.

Research Article

Frequentist and Bayesian Approaches in Modeling and Prediction of Extreme Rainfall Series: A Case Study from Southern Highlands Region of Tanzania

This study focuses on modeling and predicting extreme rainfall based on data from the Southern Highlands region, the critical for rain-fed agriculture in Tanzania. Analyzing 31 years of annual maximum rainfall data spanning from 1990 to 2020, the Generalized Extreme Value (GEV) model proved to be the best for modeling extreme rainfall in all stations. Three estimation methods–L-moments, maximum likelihood estimation (MLE), and Bayesian Markov chain Monte Carlo (MCMC)–were employed to estimate GEV parameters and future return levels. The Bayesian MCMC approach demonstrated superior performance by incorporating noninformative priors to ensure that the prior information had minimal influence on the analysis, allowing the observed data to play a dominant role in shaping the posterior distribution. Furthermore, return levels for various future periods were estimated, providing guidance for flood protection measures and infrastructure design. Trend analysis using value, Kendall’s tau, and Sen’s slope indicated no statistically significant trends in rainfall patterns, although a weak positive trend in extreme rainfall events was observed, suggesting a gradual and modest increase over time. Overall, the study contributes valuable insights into extreme rainfall patterns and underscores the importance of L-moments in identifying the best fit distribution and Bayesian MCMC methodology for accurate parameter estimation and prediction, enabling effective measures and infrastructure planning in the region.

Research Article

Diurnal Variation Characteristics of Raindrop Size Distribution Observed by a Parsivel2 Disdrometer in the Ili River Valley

The diurnal variation characteristics of raindrop size distribution (RSD) in the Ili River Valley are investigated in this study, using the RSD data from May to September during 2020-2021 collected by a Parsivel2 disdrometer in Zhaosu. Significant diurnal variations (02–07, 08–13, 14–19, and 20-01 local standard time (LST)) of precipitation and RSD in Zhaosu are revealed during the rainy seasons. Precipitation mainly occurs in the late afternoon and early evening. A higher concentration of small raindrops is observed in the morning, whereas more mid-size and large raindrops are observed in the afternoon. The RSD exhibits diurnal differences between different rainfall rate classes; the diurnal difference of RSD is more pronounced in the case of high rainfall rates. Stratiform precipitation can occur at any time of the day, yet convective precipitation mainly occurs during the late afternoon and early evening. The RSD of stratiform rainfall shows a similar distribution over the four time periods. For convective rainfall, the concentration of small raindrops is the highest (lowest) over 02–07 (14–19) LST, while the highest (lowest) concentration of medium and large drops is observed over 14–19 (02–07) LST. Convective rain in the Ili River Valley over 14–19 LST can be characterized as the continental convective cluster, while in the rest time of the day, it is neither in the maritime cluster nor in the continental cluster. The empirical relationships between the radar reflectivity factor and rainfall rate (Z-R) for stratiform and convective rain types are also derived. The purpose of this study is to advance our understanding of precipitation microphysics in arid mountainous region.

Advances in Meteorology
 Journal metrics
See full report
Acceptance rate14%
Submission to final decision121 days
Acceptance to publication18 days
CiteScore4.600
Journal Citation Indicator0.490
Impact Factor2.9
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.