Advances in Meteorology
 Journal metrics
Acceptance rate37%
Submission to final decision118 days
Acceptance to publication49 days
CiteScore2.600
Impact Factor1.491

Development and Evaluation of a Hydrometeorological Forecasting System Using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Model

Read the full article

 Journal profile

Advances in Meteorology publishes research in all areas of meteorology and climatology. Topics include forecasting techniques and applications, meteorological modelling, data analysis, atmospheric chemistry and physics, and climate change.

 Editor spotlight

James Cleverly, the journal’s Chief Editor, is based at the University of Technology in Sydney, Australia. His research interests include carbon, water and energy fluxes of arid-land Acacia swales; physics of the atmospheric surface layer and interactions with terrestrial ecosystems.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Numerical Simulation of Near-Surface Wind during a Severe Wind Event in a Complex Terrain by Multisource Data Assimilation and Dynamic Downscaling

Accurate forecast and simulation of near-surface wind is a great challenge for numerical weather prediction models due to the significant transient and intermittent nature of near-surface wind. Based on the analyses of the impact of assimilating in situ and Advanced Tiros Operational Vertical Sounder (ATOVS) satellite radiance data on the simulation of near-surface wind during a severe wind event, using the new generation mesoscale Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system, the dynamic downscaling of near-surface wind is further investigated by coupling the microscale California Meteorological (CALMET) model with the WRF and its 3DVAR system. Results indicate that assimilating in situ and ATOVS radiance observations strengthens the airflow across the Alataw valley and triggers the downward transport of momentum from the upper atmosphere in the downstream area of the valley in the initial conditions, thus improving near-surface wind simulations. Further investigations indicate that the CALMET model provides more refined microtopographic structures than the WRF model in the vicinity of the wind towers. Although using the CALMET model achieves the best simulation of near-surface wind through dynamic downscaling of the output from the WRF and its 3DVAR assimilation, the simulation improvements of near-surface wind speed are mainly within 1 m s−1. Specifically, the mean improvement proportions of near-surface wind speed are 64.8% for the whole simulation period, 58.7% for the severe wind period, 68.3% for the severe wind decay period, and 75.4% for the weak wind period. The observed near-surface wind directions in the weak wind conditions are better simulated in the coupled model with CALMET downscaling than in the WRF and its 3DVAR system. It is concluded that the simulation improvements of CALMET downscaling are distinct when near-surface winds are weak, and the downscaling effects are mainly manifested in the simulation of near-surface wind directions.

Research Article

Diurnal Variation of Seasonal Precipitation over the CONUS: A Comparison of Gauge Observations with TRMM Data

Diurnal variation of precipitation is a fundamental periodic signal of local climate. Comprehensive study of diurnal variation of precipitation is helpful in studying the formation of local climate and validating satellite precipitation products. In this study, a comparison is drawn between precipitation gauge observations and Tropical Rainfall Measuring Mission (TRMM) 3B42 data on diurnal variation of precipitation. First, using the K-means clustering algorithm, stations with gauge observations and pixels with TRMM data are divided into different groups according to the diurnal variation of precipitation, respectively. In each group, the stations have similar diurnal variation of precipitation. Then maps of diurnal variation of precipitation for gauge observations and TRMM data are obtained. According to these maps, the diurnal variation of precipitation over the contiguous United States (CONUS) presents seasonal variability in both gauge observations and TRMM data. In addition, the diurnal variation of precipitation shows clustered features in space. However, the spatial patterns of the obtained maps do not match, and the TRMM satellite data perform poorly in capturing the hourly precipitation event. Finally, the possible mechanism behind the prevailing nocturnal precipitation over the middle of the CONUS is discussed, with the prevailing nocturnal precipitation judged likely to be strongly related to the mountain-plains solenoid (MPS) circulation.

Research Article

Application of Multiple Detection Data in the Analysis of Snowstorm Processes in Xinjiang during the Central Asia Extreme Precipitation Observation Test (CAEPOT)

At present, there is insufficient research on the refinement of the vertical structure of winter snowstorm systems in arid areas, and, compared with the central and eastern China, the observation sites in arid areas of northwestern China are scarce. To deepen the understanding of dynamics and microphysical processes and improve the level of forecasting and warning of snowstorms in northwestern China, the Institute of Desert Meteorology, China Meteorological Administration, Urumqi, carried out the Central Asia Extreme Precipitation Observation Test (CAEPOT) in Yili, Xinjiang, a typical arid region in China in February 2020. This paper uses multiple fine detection datasets obtained from the CAEPOT, including radar wind profiler, ground-based microwave radiometer, and millimeter-wave cloud radar to analyze macroscopic characteristics and microphysical changes of snowstorm system in Xinjiang. Studies have shown that the low trough with sufficient moisture, heat, power conditions, and weakening banded cloud system, which moved eastward from the Aral Sea to the west of Xinjiang during the snowstorm, were the key influencing system of this snowstorm. Before the snowstorm, the vertical shear of the horizontal wind field was severe, which aggravated the instability of the atmosphere, and there was upward motion in the lower atmosphere. A variety of physical quantities related to moisture showed a tendency to increase at the lower level and could be used as an early warning signal for snowstorm about 8 hours in advance, and the cloud and snow particles observed by millimeter-wave cloud radar were simultaneously developing upward and downward from 4 km, providing snowstorm warning 12 hours in advance. During the snowstorm, the horizontal wind speed and vertical speed were obviously enhanced, and the physical quantities related to moisture further increased, and, with the blocking and uplifting of the Tianshan Mountains, the snowstorm increased. The particles collided and grew while falling, resulting in a decrease in particle concentration and an increase in particle radius from high altitude to the ground, eventually resulting in near-ground reflectivity factor up to 30 dBz. In addition, reflectivity factor, physical quantities related to moisture, wind field, particle concentration, and particle radius all had a good correspondence with the beginning, end, and intensity of snowstorm, so when the physical quantities mentioned above weakened and stopped, snowstorm also weakened and stopped. In a word, this research is an important and meaningful work that provides more backgrounds and references for the forecast and warning of snowstorm in northwestern China.

Research Article

Mountain Waves Analysis in the Vicinity of the Madrid-Barajas Airport Using the WRF Model

Turbulence and aircraft icing associated with mountain waves are weather phenomena potentially affecting aviation safety. In this paper, these weather phenomena are analysed in the vicinity of the Adolfo Suárez Madrid-Barajas Airport (Spain). Mountain waves are formed in this area due to the proximity of the Guadarrama mountain range. Twenty different weather research and forecasting (WRF) model configurations are evaluated in an initial analysis. This shows the incompetence of some experiments to capture the phenomenon. The two experiments showing the best results are used to simulate thirteen episodes with observed mountain waves. Simulated pseudosatellite images are validated using satellite observations, and an analysis is performed through several skill scores applied to brightness temperature. Few differences are found among the different skill scores. Nevertheless, the Thompson microphysics scheme combined with the Yonsei university PBL scheme shows the best results. The simulations produced by this scheme are used to evaluate the characteristic variables of the mountain wave episodes at windward and leeward and over the mountain. The results show that north-northwest wind directions, moderate wind velocities, and neutral or slightly stable conditions are the main features for the episodes evaluated. In addition, a case study is analysed to evidence the WRF ability to properly detect turbulence and icing associated with mountain waves, even when there is no visual evidence available.

Research Article

Spatial Distribution and Temporal Trends in the Daily Precipitation Concentration across the Yarlung Tsangpo River Basin: Eastern Himalaya of China

Understanding the temporal inequality in precipitation is of great importance for water resource management, environmental risk management, and ecological conservation. This study investigated the spatial patterns and trends of the daily precipitation concentration over the Yarlung Tsangpo River Basin using the concentration index (CI) and the Lorentz asymmetric coefficient (LAC). A Mann–Kendall test and Hurst’s rescaled range analysis were used to detect the change in CI trends. The CI ranged from 0.58 to 0.65, suggesting that a quarter of the rainiest days contributed approximately 69–78% of the total precipitation. The LAC analysis indicated that the nonuniform distribution of precipitation was mainly attributed to a large proportion of days with light rainfall. Compared with that of the central region, the daily precipitation in the western and eastern regions was more irregular. At a seasonal scale, the dry season had a less homogeneous spatial distribution of CI compared to that of the wet season. Most areas exhibited no significant trends in CI from 1970 to 2017. A quarter of the stations presented a significant downward trend in CI, which were primarily found in the central and northern regions. In addition, the future trends of CI in most areas mostly agree with those of the current state; however, the majority of stations exhibited an uneven precipitation distribution in the dry season.

Research Article

Evaluation and Analysis of Soil Temperature Data over Poyang Lake Basin, China

Soil temperature reflects the impact of local factors, such as the vegetation, soil, and atmosphere of a region. Therefore, it is important to understand the regional variation of soil temperature. However, given the lack of observations with adequate spatial and/or temporal coverage, it is often difficult to use observational data to study the regional variation. Based on the observational data from Nanchang and Ganzhou stations and ERA-Interim/Land reanalysis data, this study analyzed the spatiotemporal distribution characteristics of soil temperature over Poyang Lake Basin. Four soil depths were examined, 0–7, 7–28, 28–100, and 100–289 cm, recorded as ST1, ST2, ST3, and ST4, respectively. The results showed close correlations between observation data and reanalysis data at different depths. Reanalysis data could reproduce the main spatiotemporal distributions of soil temperature over the Poyang Lake Basin but generally underestimated their magnitudes. Temporally, there was a clear warming trend in the basin. Seasonally, the temperature increase was the most rapid in spring and the slowest in summer, except for ST4, which increased the fastest in spring and the slowest in winter. The temperature increase was faster for ST1 than the other depths. The warming trend was almost the same for ST2, ST3, and ST4. An abrupt change of annual soil temperature at all depths occurred in 1997, and annual soil temperatures at all depths were abnormally low in 1984. Spatially, annual soil temperature decreased with latitude, except for the summer ST1. Because of the high temperature and precipitation in summer, the ST1 values were higher around the lake and the river. The climatic trend of soil temperature generally increased from south to north, which was opposite to the distribution of soil temperature. These findings provide a basis for understanding and assessing the variation of soil temperature in the Poyang Lake Basin.

Advances in Meteorology
 Journal metrics
Acceptance rate37%
Submission to final decision118 days
Acceptance to publication49 days
CiteScore2.600
Impact Factor1.491
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.