Advances in Meteorology
 Journal metrics
See full report
Acceptance rate25%
Submission to final decision88 days
Acceptance to publication21 days
CiteScore3.900
Journal Citation Indicator0.420
Impact Factor2.223

Orographic Effect and the Opposite Trend of Rainfall in Central Vietnam

Read the full article

 Journal profile

Advances in Meteorology publishes research in all areas of meteorology and climatology. Topics include forecasting techniques and applications, meteorological modelling, data analysis, atmospheric chemistry and physics, and climate change.

 Editor spotlight

Dr Jamie Cleverly, the journal’s Chief Editor, is based at James Cook University in Cairns, Australia. Their research interests include carbon, water and energy fluxes of arid-land Acacia swales; physics of the atmospheric surface layer and interactions with terrestrial ecosystems.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Spatiotemporal Variability of Extreme Rainfall in Southern Benin in the Context of Global Warming

Changes in the frequency and timing of extreme precipitation in southern Benin are assessed in the context of global warming. The peak-over-threshold (POT) is used for this purpose, with the six (06) year return period daily rainfall as the threshold over seventeen (17) weather stations between 1960 and 2018. The results show that the South Benin experienced extreme rainfall on many occasions between 1960 and 2018 with a nonuniform spatiotemporal distribution of this category of rainfall. No statistically significant trend in the frequency and variation of extreme rainfall intensities is revealed over the study period. Despite the low rate of extreme rainfall, the monthly trend is consistent with the bimodal rainfall regime in southern Benin. The global warming highlighted in its last decades in southern Benin is accompanied by a slightly upward trend in extreme rainfall compared to the period before 1990.

Research Article

Study on the Impact of Future Climate Change on Extreme Meteorological and Hydrological Elements in the Upper Reaches of the Minjiang River

Global warming increases global average precipitation and evaporation, causing extreme climate and hydrological events to occur frequently. Future changes in temperature, precipitation, and runoff from 2021 to 2050 in the upper reaches of the Minjiang River were analyzed using a distributed hydrological model, the SWAT (Soil and Water Assessment Tool), under a future climate scenario. Simultaneously, future variation characteristics of extreme climate hydrological elements in the upper reaches of the Minjiang River were analyzed using extreme climate and runoff indicators. The research shows that the frequency and intensity of the extreme temperature warming index will increase, while those of the extreme temperature cooling index will increase and then weaken in the upper reaches of the Minjiang River under a future climate scenario. The duration of precipitation, the intensity of continuous heavy precipitation, and the frequency of heavy precipitation will increase, whereas the intensity of short-term heavy precipitation and the frequency of heavy precipitation will decrease. However, spatial distribution of flood in the upper reaches is different, and thus flood risk in the upstream source area will still tend to increase. Particular attention should be given to the increase in autumn flood risk in the upper reaches of the Minjiang River.

Research Article

Climatology Definition of the Myanmar Southwest Monsoon (MSwM): Change Point Index (CPI)

Myanmar’s climate is heavily influenced by its geographic location and relief. Located between the Indian summer monsoon (ISM) and the East Asian summer monsoon (EASM), Myanmar’s climate is distinguished by the alternation of seasons known as the monsoon. The north-south direction of peaks and valleys creates a pattern of alternate zones of heavy and scanty precipitation during both the northeast and southwest monsoons. The majority of the rainfall has come from Myanmar’s southwest monsoon (MSwM), which is Myanmar’s rainy season (summer in global terms, June–September). This study explained both threshold-based and nonthreshold-based objective definitions of the onset and withdrawal of large-scale MSwM. The seasonal transitions in MSwM circulation and precipitation are convincingly represented by the new index, which is based on change point detection of the atmospheric moisture flow converging in the MSwM region (10–28 N, 92–102 E). A transition in vertically integrated moisture transport (VIMT), the reversal of surface winds, and an increase in precipitation may also be considered when defining MSwM onset objectively. We also define a change point of the MSwM (CPI) index for MSwM onset and withdrawal dates. The climatological mean onset of MSwM is day 135 (May 14), withdrawal is day 278 (October 4), and the total season length is 144 days. We are investigating spatial patterns of rainfall progression at and after the start of the monsoon, rather than transitions within a single region of the MSwM. The local southwest monsoon duration is well correlated with the CPI duration on interannual timescales, particularly in the peak rainfall regions, with a delay (advance) in large-scale onset or withdrawal associated with a delay (advance) of onset or withdrawal by local index. Hence, the next phase of this research is to study the maintenance and break of the monsoon to understand the underlying physical processes governing the monsoon circulation. The results of this study provide a possibility to reconstruct Myanmar’s monsoon climate dynamics, and the findings of this study can help unravel many remaining questions regarding the greater Asian monsoon system’s variability.

Research Article

Potential Impacts of Future Climate Changes on Crop Productivity of Cereals and Legumes in Tamil Nadu, India: A Mid-Century Time Slice Approach

Climate change is a terrible global concern and one of the greatest future threats to societal development as a whole. The accelerating pace of climate change is becoming a major challenge for agricultural production and food security everywhere. The present study uses the midcentury climate derived from the ensemble of 29 general circulation models (GCMs) on a spatial grid to quantify the anticipated climate change impacts on rice, maize, black gram, and red gram productivity over Tamil Nadu state in India under RCP 4.5 and RCP 8.5 scenarios. The future climate projections show an unequivocal increase of annual maximum temperature varying from 0.9 to 2.2°C for RCP 4.5 and 1.4 to 2.7°C in RCP 8.5 scenario by midcentury, centered around 2055 compared to baseline (1981–2020). The projected rise in minimum temperature ranges from 1.0 to 2.2°C with RCP 4.5 and 1.8 to 2.7°C under RCP 8.5 scenario. Among the monsoons, the southwest monsoon (SWM) is expected to be warmer than the northeast monsoon (NEM). Annual rainfall is predicted to increase up to 20% under RCP 4.5 scenario in two-third of the area over Tamil Nadu. Similarly, RCP 8.5 scenario indicates the possibility of an increase in rainfall in the midcentury with higher magnitude than RCP 4.5. Both SWM and NEM seasons are expected to receive higher rainfall during midcentury under RCP 4.5 and RCP 8.5 than the baseline. In the midcentury, climate change is likely to pose a negative impact on the productivity of rice, maize, black gram, and red gram with both RCP 4.5 and RCP 8.5 scenarios in most places of Tamil Nadu. The magnitude of the decline in yield of all four crops would be more with RCP 8.5 over RCP 4.5 scenario in Tamil Nadu. Future climate projections made through multi-climate model ensemble could increase the plausibility of future climate change impact assessment on crop productivity. The adverse effects of climate change on cereal and legume crop productivity entail the potential adaptation options to ensure food security.

Research Article

Long-Term (2007 to 2018) Energy and CO2 Fluxes over an Agriculture Ecosystem in the Southeastern Margin of the Tibetan Plateau

Long-term eddy covariance flux observations over complex topography are crucial for improving the understanding of the turbulent exchanges between the land and atmosphere. Based on a 12-year (2007–2018) record dataset measured with the eddy covariance technique over the Dali agriculture ecosystem in the southeastern margin of the Tibetan Plateau, we investigated the diurnal, seasonal, and interannual variations of the sensible heat flux (Hs), latent heat flux (LE), and carbon dioxide flux (Fc), and their controlling variables. The results showed that Hs and LE exhibited similar diurnal and seasonal variations, while the amplitude of LE was clearly larger than that of Hs throughout the year. The turbulent fluxes showed remarkable fluctuation on the annual scale. The annual average Hs (LE) increases (decreases) from approximately 8 (110) W·m−2 during 2007–2013 to 20 (79) W·m−2 during 2014–2018. The annual cumulative net CO2 ecosystem exchange (NEE) increases significantly from approximately −739 g·C·m−2·yr−1 during 2007–2013 to −218 g·C·m−2·yr−1 during 2014–2018. The relationship between turbulent fluxes and meteorological variables was also examined. Wind speed (WS) is found to be the dominant controlling factor for the Hs on different temporal scales and their correlation coefficients increase when the timescales vary from daily to annual scale; whereas the product of WS and vapor pressure deficit (VPD) is the major meteorological variable controlling the LE over all temporal scales. The net radiation (Rn) is the dominating factor for Fc on daily and monthly timescales, while WS becomes the most controlling factor for Fc on an annual scale. Notably, surface energy and CO2 fluxes are also greatly influenced by the vegetation cover surrounding the measurement site.

Research Article

Influence of Underlying Surface on Distribution of Hourly Heavy Rainfall over the Middle Yangtze River Valley

The variation of boundary layer circulation caused by the influence of complex underlying surface is one of the reasons why it is difficult to forecast hourly heavy rainfall (HHR) in the middle Yangtze River Valley (YRV). Based on the statistics of high-resolution observation data, it is found that the low resolution data underestimate the frequency of HHR in the mountain that are between the twain-lake basins in the middle YRV (TLB-YRV). The HHR frequency of mountainous area in the TLB-YRV is much higher than that of Dongting Lake on its left and is equivalent to the HHR frequency of Poyang Lake on its right. The hourly reanalysis data of ERA5 were used to study the variation of boundary layer circulation when HHR occurred. It can be found that the boundary layer circulation corresponding to different underlying surfaces changed under the influence of the weather system. Firstly, the strengthening of the weather system in the early morning resulted in the strengthening of the southwest low-level air flow, which intensified the uplift of the windward slope air flow on the west and south slopes of the mountainous areas in the TLB-YRV. As a result, the sunrise HHR gradually increases from the foot of the mountain. The high-frequency HHR period of sunrise occurs when the supergeostrophic effect is weakened, the low-level vorticity and frontal forcing are strengthened, and the water vapor flux convergence begins to weaken. Secondly, the high-frequency HHR period of the sunset is caused by stronger local uplift and more unstable atmospheric stratification, but the enhanced local uplift is caused by the coupling of the terrain forcing of the underlying surface and the enhanced northern subgeostrophic flow, which causes the HHR to start closer to the mountain top at sunset than at sunrise.

Advances in Meteorology
 Journal metrics
See full report
Acceptance rate25%
Submission to final decision88 days
Acceptance to publication21 days
CiteScore3.900
Journal Citation Indicator0.420
Impact Factor2.223
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.