Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2010, Article ID 168346, 15 pages
http://dx.doi.org/10.1155/2010/168346
Research Article

Identification of the Aerosol Types over Athens, Greece: The Influence of Air-Mass Transport

1Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Nymphon, P.O. Box 20048, 11810 Athens, Greece
2Department of Geology and Geo-Environment, University of Athens, University Campus, 15784 Zografou, Greece

Received 27 June 2009; Revised 4 September 2009; Accepted 3 October 2009

Academic Editor: Krishnaswamy Krishnamoorthy

Copyright © 2010 D. G. Kaskaoutis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review,” Reviews of Geophysics, vol. 38, no. 4, pp. 513–543, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. IPCC, “Summary for policymakers,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al., Eds., Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  3. M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bulletin of the American Meteorological Society, vol. 80, no. 11, pp. 2229–2259, 1999. View at Google Scholar · View at Scopus
  4. F. Barnaba and G. P. Gobbi, “Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001,” Atmospheric Chemistry and Physics, vol. 4, no. 9-10, pp. 2367–2391, 2004. View at Google Scholar · View at Scopus
  5. C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data,” Journal of Geophysical Research D, vol. 113, no. 11, Article ID D11205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Moulin, C. E. Lambert, U. Dayan et al., “Satellite climatology of African dust transport in the Mediterranean atmosphere,” Journal of Geophysical Research D, vol. 103, no. D11, pp. 13137–13144, 1998. View at Google Scholar · View at Scopus
  7. D. Antoine and D. Nobileau, “Recent increase of Saharan dust transport over the Mediterranean Sea, as revealed from ocean color satellite (SeaWiFS) observations,” Journal of Geophysical Research D, vol. 111, no. 12, Article ID D12214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Tafuro, F. Barnaba, F. De Tomasi, M. R. Perrone, and G. P. Gobbi, “Saharan dust particle properties over the central Mediterranean,” Atmospheric Research, vol. 81, no. 1, pp. 67–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. G. Kaskaoutis, H. D. Kambezidis, P. T. Nastos, and P. G. Kosmopoulos, “Study on an intense dust storm over Greece,” Atmospheric Environment, vol. 42, no. 29, pp. 6884–6896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Meloni, A. di Sarra, F. Monteleone, G. Pace, S. Piacentino, and D. M. Sferlazzo, “Seasonal transport patterns of intense Saharan dust events at the Mediterranean island of Lampedusa,” Atmospheric Research, vol. 88, no. 2, pp. 134–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Lelieveld, H. Berresheim, S. Borrmann et al., “Global air pollution crossroads over the Mediterranean,” Science, vol. 298, no. 5594, pp. 794–799, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. Stohl, S. Eckhardt, C. Forster, P. James, and N. Spichtinger, “On the pathways and timescales of intercontinental air pollution transport,” Journal of Geophysical Research, vol. 107, Article ID D4684, 2002. View at Publisher · View at Google Scholar
  13. B. N. Duncan and I. Bey, “A modeling study of the export pathways of pollution from Europe: seasonal and interannual variations (1987–1997),” Journal of Geophysical Research D, vol. 109, no. 8, Article ID D08301, pp. 1–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Feichter, E. Kjellström, H. Rodhe, F. Dentener, J. Lelieveld, and G.-J. Roelofs, “Simulation of the tropospheric sulfur cycle in a global climate model,” Atmospheric Environment, vol. 30, no. 10-11, pp. 1693–1707, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Prospero, “Mineral and sea salt aerosol concentration in various ocean regions,” Journal of Geophysical Research, vol. 84, no. C2, pp. 725–731, 1979. View at Google Scholar · View at Scopus
  16. J. Heintzenberg, D. C. Covert, and R. Van Dingenen, “Size distribution and chemical composition of marine aerosols: a compilation and review,” Tellus, Series B, vol. 52, no. 4, pp. 1104–1122, 2000. View at Google Scholar · View at Scopus
  17. D. G. Kaskaoutis, P. Kosmopoulos, H. D. Kambezidis, and P. T. Nastos, “Aerosol climatology and discrimination of different types over Athens, Greece, based on MODIS data,” Atmospheric Environment, vol. 41, no. 34, pp. 7315–7329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. G. Kosmopoulos, D. G. Kaskaoutis, P. T. Nastos, and H. D. Kambezidis, “Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data,” Remote Sensing of Environment, vol. 112, no. 5, pp. 2354–2366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. J. Kaufman and D. Tanrè, “Algorithm for remote sensing of tropospheric aerosol from MODIS,” Algorithm Theoretical Basis Documents (ATBD-MOD-02), p. 85, 1998.
  20. R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, “Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance,” Journal of Geophysical Research D, vol. 112, no. 13, Article ID D13211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. A. Chu, Y. J. Kaufman, G. Zibordi et al., “Global monitoring of air pollution over land from the Earth observing system-terra moderate resolution imaging spectroradiometer (MODIS),” Journal of Geophysical Research D, vol. 108, no. 21, article 4661, pp. ACH4.1–ACH4.18, 2003. View at Google Scholar · View at Scopus
  22. C. Ichoku, D. A. Chu, S. Mattoo et al., “A spatio-temporal approach for global validation and analysis of MODIS aerosol products,” Geophysical Research Letters, vol. 29, no. 12, pp. 1.1–1.14, 2002. View at Google Scholar · View at Scopus
  23. D. A. Chu, Y. J. Kaufman, C. Ichoku, L. A. Remer, D. Tanré, and B. N. Holben, “Validation of MODIS aerosol optical depth retrieval over land,” Geophysical Research Letters, vol. 29, no. 12, pp. 2.1–2.4, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. L. A. Remer, D. Tanré, Y. J. Kaufman et al., “Validation of MODIS aerosol retrieval over ocean,” Geophysical Research Letters, vol. 29, no. 12, pp. 3.1–3.4, 2002. View at Google Scholar · View at Scopus
  25. R. C. Levy, L. A. Remer, D. Tanré et al., “Evaluation of the moderate-resolution imaging spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE,” Journal of Geophysical Research D, vol. 108, no. 19, pp. 10.1–10.13, 2003. View at Google Scholar · View at Scopus
  26. R. C. Levy, L. A. Remer, and O. Dubovik, “Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrieval over land,” Journal of Geophysical Research D, vol. 112, no. 13, Article ID D13210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. L. A. Remer, Y. J. Kaufman, D. Tanré et al., “The MODIS aerosol algorithm, products, and validation,” Journal of the Atmospheric Sciences, vol. 62, no. 4, pp. 947–973, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. R. Draxler and G. D. Rolph, “HYSPLIT (Hybrid single-particle Lagrangian Integrated Trajectory) model,” NOAA Air Resources Laboratory, Silver, Spring, Md, USA, 2003, http://www.arl.noaa.gov/ready/hysplit4.html.
  29. A. Papayannis, D. Balis, V. Amiridis et al., “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmospheric Chemistry and Physics, vol. 5, no. 8, pp. 2065–2079, 2005. View at Google Scholar · View at Scopus
  30. V. Amiridis, D. S. Balis, S. Kazadzis et al., “Four-year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET),” Journal of Geophysical Research D, vol. 110, no. 21, Article ID D21203, pp. 1–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Meloni, A. di Sarra, G. Biavati et al., “Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005,” Atmospheric Environment, vol. 41, no. 14, pp. 3041–3056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature, vol. 419, no. 6903, pp. 215–223, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. L. A. Remer and Y. J. Kaufman, “Dynamic aerosol model: urban/industrial aerosol,” Journal of Geophysical Research D, vol. 103, no. D12, pp. 13859–13871, 1998. View at Google Scholar · View at Scopus
  34. K. O. Ogunjobi, Z. He, and C. Simmer, “Spectral aerosol optical properties from AERONET Sun-photometric measurements over West Africa,” Atmospheric Research, vol. 88, no. 2, pp. 89–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Smirnov, B. N. Holben, O. Dubovik, R. Frouin, T. F. Eck, and I. Slutsker, “Maritime component in aerosol optical models derived from aerosol robotic network data,” Journal of Geophysical Research D, vol. 108, no. 1, pp. AAC14.1–AAC14.11, 2003. View at Google Scholar · View at Scopus
  36. G. Pace, A. di Sarra, D. Meloni, S. Piacentino, and P. Chamard, “Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types,” Atmospheric Chemistry and Physics, vol. 6, no. 3, pp. 697–713, 2006. View at Google Scholar · View at Scopus
  37. K. K. Moorthy, S. S. Babu, and S. K. Satheesh, “Aerosol characteristics and radiative impacts over the Arabian Sea during the intermonsoon season: results from ARMEX field campaign,” Journal of the Atmospheric Sciences, vol. 62, no. 1, pp. 192–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. K. K. Moorthy, S. S. Babu, and S. K. Satheesh, “Aerosol spectral optical depths over the Bay of Bengal: role of transport,” Geophysical Research Letters, vol. 30, no. 5, pp. 53.1–53.4, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Formenti, M. O. Andreae, T. W. Andreae et al., “Aerosol optical properties and large-scale transport of air masses: observations at a coastal and a semiarid site in the Eastern Mediterranean during summer 1998,” Journal of Geophysical Research D, vol. 106, no. D9, pp. 9807–9826, 2001. View at Google Scholar
  40. A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” Journal of Geophysical Research D, vol. 106, no. D10, pp. 10335–10348, 2001. View at Google Scholar
  41. N. Kalivitis, E. Gerasopoulos, M. Vrekoussis et al., “Dust transport over the Eastern Mediterranean derived from total ozone mapping spectrometer, aerosol robotic network, and surface measurements,” Journal of Geophysical Research D, vol. 112, no. 3, Article ID D03202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Melas, H. D. Kambezidis, J. L. Walmsley et al., “Summary of meeting: NATO/CCMS pilot study workshop on air pollution transport and diffusion over coastal urban areas,” Atmospheric Environment, vol. 29, no. 24, pp. 3713–3718, 1995. View at Google Scholar · View at Scopus
  43. C. Zerefos, K. Ganev, K. Kourtidis, M. Tzortziou, A. Vasaras, and E. Syrakov, “On the origin of SO2 above Northern Greece,” Geophysical Research Letters, vol. 27, no. 3, pp. 365–368, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Sciare, H. Bardouki, C. Moulin, and N. Mihalopoulos, “Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime,” Atmospheric Chemistry and Physics, vol. 3, pp. 291–302, 2003. View at Google Scholar
  45. P. Alpert, P. Kishcha, A. Shtivelman, S. O. Krichak, and J. H. Joseph, “Vertical distribution of Saharan dust based on 2.5-year model predictions,” Atmospheric Research, vol. 70, no. 2, pp. 109–130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. D. S. Balis, V. Amiridis, C. Zerefos et al., “Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode,” Atmospheric Environment, vol. 37, no. 32, pp. 4529–4538, 2003. View at Publisher · View at Google Scholar · View at Scopus