Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2010, Article ID 681587, 14 pages
http://dx.doi.org/10.1155/2010/681587
Research Article

Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing and WRF Model Sensitivity Study

1Department of Meteorology and Climate Science, San José State University, 1 Washington Square, San José, CA 95192-0104, USA
2Department of Geography, University of Georgia, Athens, GA 30602, USA
3IMSG at Environmental Modeling Center, NOAA/NCEP, Camp Springs, MD 20746, USA

Received 9 April 2010; Revised 13 October 2010; Accepted 24 November 2010

Academic Editor: Krishnaswamy Krishnamoorthy

Copyright © 2010 Menglin Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. E. Landsberg, “Man-made climate change,” Science, vol. 170, pp. 1265–1274, 1970. View at Google Scholar · View at Scopus
  2. A. J. Arnfield, “An approach to the estimation of the surface radiative properties and radiation budgets of cities,” Physical Geography, vol. 3, no. 2, pp. 97–122, 1982. View at Google Scholar · View at Scopus
  3. C. S. B. Grimmond and T. R. Oke, “Heat storage in urban areas: local-scale observations and evaluation of a simple model,” Journal of Applied Meteorology, vol. 38, no. 7, pp. 922–940, 1999. View at Google Scholar · View at Scopus
  4. M. Jin, R. E. Dickinson, and DA. L. Zhang, “The footprint of urban areas on global climate as characterized by MODIS,” Journal of Climate, vol. 18, no. 10, pp. 1551–1565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Yow, “Urban heat islands: observations, impacts, and adaptation,” Geography Compass, vol. 1, no. 6, pp. 1227–1251, 2007. View at Google Scholar
  6. T. R. Oke, “Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations,” Journal of Climatology, vol. 1, no. 3, pp. 237–254, 1981. View at Google Scholar · View at Scopus
  7. T. R. Oke, “The energetic basis of the urban heat island (Symons Memorial Lecture, 20 May 1980),” Quarterly Journal, Royal Meteorological Society, vol. 108, no. 455, pp. 1–24, 1982. View at Google Scholar · View at Scopus
  8. Y. Zhou and J. M. Shepherd, “Atlanta's urban heat island under extreme heat conditions and potential mitigation strategies,” Natural Hazards, vol. 52, no. 3, pp. 639–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Jin, J. M. Shepherd, and M. D. King, “Urban aerosols and their interac-tion with clouds and rainfall: a case study for New York and Houston,” Journal of Geophysical Research, vol. 110, Article ID D10S20, 12 pages, 2005. View at Google Scholar
  10. G. A. Meehl, C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel, “Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S,” Geophysical Research Letters, vol. 36, no. 23, Article ID L23701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Sterl, C. Severijns, H. Dijkstra et al., “When can we expect extremely high surface temperatures?” Geophysical Research Letters, vol. 35, no. 14, Article ID L14703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Changnon, K. E. Kunkel, and B. C. Reinke, “Impacts and responses to the 1995 heat wave: a call to action,” Bulletin of the American Meteorological Society, vol. 77, no. 7, pp. 1497–1506, 1996. View at Google Scholar · View at Scopus
  13. B. Menne, “The health impacts of 2003 summer heat-waves. Briefing note for the delegations of the fifty third session of the WHO regional Committee for Europe,” WHO Europe, 12pp.
  14. M. Beniston, “The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations,” Geophysical Research Letters, vol. 31, no. 2, pp. L02202–4, 2004. View at Google Scholar · View at Scopus
  15. S. Cheval, A. Dumitrescu, and A. Bell, “The urban heat island of Bucharest during the extreme high temperatures of July 2007,” Theoretical and Applied Climatology, vol. 97, no. 3-4, pp. 391–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Shepherd, R. Showstack, and M. Jin, “Linkages between the built urban environment and earth's climate system,” Eos, vol. 85, no. 23, pp. 227–228, 2004. View at Google Scholar · View at Scopus
  17. M. Jin and J. M. Shepherd, “On including urban landscape in land surface model—how can satellite data help?” Bulletin of the AMS, vol. 86, no. 5, pp. 681–689, 2005. View at Google Scholar
  18. M. Jin, J. M. Shepherd, and C. Peters-Lidard, “Development of a parameterization for simulating the urban temperature hazard using satellite observations in climate model,” Natural Hazards, vol. 43, no. 2, pp. 257–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Lamptey, “An analytical framework for estimating the urban effect on climate,” International Journal of Climatology, vol. 30, no. 1, pp. 72–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. J. Kaufman and I. Koren, “Smoke and pollution aerosol effect on cloud cover,” Science, vol. 313, no. 5787, pp. 655–658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. IPCC, “The Fourth Assessment Report of the Integovernmental Panel on Climate Change. WG1: Climate Change,” The Physical Science Basis. Cambridge University Press, pp.996, 2007.
  22. D. Rosenfeld, “Suppression of rain and snow by urban and industrial air pollution,” Science, vol. 287, no. 5459, pp. 1793–1796, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Jin and J. M. Shepherd, “Aerosol relationships to warm season clouds and rainfall at monthly scales over east China: urban land versus ocean,” Journal of Geophysical Research D, vol. 113, no. 24, Article ID D24S90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. L. Bell and D. Rosenfeld, “Comment on "Weekly precipitation cycles? Lack of evidence from United States surface stations" by D. M. Schultz et al,” Geophysical Research Letters, vol. 35, no. 9, Article ID L09803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. K. Kim, . , M. Chin, K. M. Kim, Y. C. Sud, and . , “Atmospheric teleconnection over Eurasia induced by aerosol radiative forcing during boreal spring,” Journal of Climate, vol. 19, no. 18, pp. 4700–4718, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Chou and M. J. Suarez, “A solar radiation parameterization for atmosphere studies,” Technical Memorandum 104606, NASA, Greenbelt, Md, USA, 1999, vol. 12, 40pages. View at Google Scholar
  27. B. N. Holben, T. F. Eck, I. Slutsker et al., “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sensing of Environment, vol. 66, no. 1, pp. 1–16, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. K. C. Seto and J. M. Shepherd, “Global urban land-use trends and climate impacts,” Current Opinion in Environmental Sustainability, vol. 1, no. 1, pp. 89–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Dickinson, “BATS,” Tech. Rep., NCAR, 1986. View at Google Scholar
  30. Z. Wan, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 4, pp. 892–905, 1996. View at Google Scholar · View at Scopus
  31. K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, and S. Haginoya, “Evaluation and improvement of the MODIS land surface temperature/emissivity products using ground-based measurements at a semi-desert site on the western Tibetan Plateau,” International Journal of Remote Sensing, vol. 28, no. 11, pp. 2549–2565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” International Journal of Remote Sensing, vol. 29, pp. 5373–5395, 2008. View at Google Scholar
  33. T. F. Eck, B. N. Holben, J. S. Reid et al., “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” Journal of Geophysical Research D, vol. 104, no. 24, pp. 31333–31349, 1999. View at Google Scholar · View at Scopus
  34. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” Journal of Geophysical Research D, vol. 105, no. 16, pp. 20673–20696, 2000. View at Google Scholar · View at Scopus
  35. W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A description of the Advanced Re-search WRF Version 3,” NCAR Tech Notes 475+STR, 2008. View at Google Scholar
  36. F. Chen and J. Dudhia, “Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity,” Monthly Weather Review, vol. 129, no. 4, pp. 569–585, 2001. View at Google Scholar · View at Scopus
  37. M. B. Ek, K. E. Mitchell, Y. Lin et al., “Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model,” Journal of Geophysical Research D, vol. 108, no. 22, pp. 1–16, 2003. View at Google Scholar · View at Scopus
  38. H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Boundary-Layer Meteorology, vol. 101, no. 3, pp. 329–358, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Friedl, D. K. McIver, J. C. F. Hodges et al., “Global land cover mapping from MODIS: algorithms and early results,” Remote Sensing of Environment, vol. 83, no. 1-2, pp. 287–302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Jin, “MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan Plateau,” Geophysical Research Letters, vol. 33, no. 19, Article ID L19707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Jethva, S. K. Satheesh, J. Srinivasan, and K. K. Moorthy, “How good is the assumption about visible surface reflectance in MODIS aerosol retrieval over Land? A comparison with aircraft measurements over an urban site in India,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 7, part 1, Article ID 4812038, pp. 1990–1998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Oreopoulos, M. D. Chou, M. Khairoutdinov, H. W. Barker, and R. F. Cahalan, “Performance of Goddard earth observing system GCM column radiation models under heterogeneous cloud conditions,” Atmospheric Research, vol. 72, no. 1-4, pp. 365–382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. M. Shepherd, W. M. Carter, M. Manyin, D. Messen, and S. Burian, “The impact of urbanization on current and future coastal convection: a case study for Houston,” Environment And Planning B, vol. 37, no. 2, pp. 284–304, 2010. View at Publisher · View at Google Scholar
  44. S. Menon, N. Unger, D. Koch et al., “Aerosol climate effects and air quality impacts from 1980 to 2030,” Environmental Research Letters, vol. 3, no. 2, Article ID 024004, 12 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus