Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2011, Article ID 367854, 8 pages
Research Article

An Analysis of Vegetation Change Trends and Their Causes in Inner Mongolia, China from 1982 to 2006

1State Key Lab of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 Datun Road, Anwai, Chaoyang District, Beijing 100101, China
2College of Resources and Environment, Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China

Received 10 January 2011; Revised 2 April 2011; Accepted 9 June 2011

Academic Editor: Yasunobu Iwasaka

Copyright © 2011 Baolin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents the vegetation change trends and their causes in the Inner Mongolian Autonomous Region, China from 1982 to 2006. We used National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data to determine the vegetation change trends based on regression model by fitting simple linear regression through the time series of the integrated Normalized Difference Vegetation Index (NDVI) in the growing season for each pixel and calculating the slopes. We also explored the relationship between vegetation change trends and climatic and anthropogenic factors. This paper indicated that a large portion of the study area (17%) had experienced a significant vegetation increase at the 0.05 level from 1982 to 2006. The significant vegetation increase showed no positive link with precipitation and was mainly caused by human activities. In or to the south of Horqin Sandy Land, in the Hetao Plain, and at the northern foothills of the YinshanMountain, the significant NDVI increase trends were mainly caused by the increase of the millet yield per unit of cropland. In the east of Ordos Plateau, the significant NDVI increase trends were mainly determined by the fencing and planting of grasses and trees on grassland.