Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2012, Article ID 956814, 13 pages
Research Article

Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India

1Physics Department, Punjabi University, Patiala 147002, India
2Research and Technology Development Centre, Sharda University, Greater Noida 201306, India

Received 9 November 2011; Revised 1 March 2012; Accepted 20 March 2012

Academic Editor: Aristides Bartzokas

Copyright © 2012 Deepti Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Impact of dust storms on the aerosol characteristics and radiative forcing over Patiala, northwestern India has been studied during April-June of 2010 using satellite observations and ground-based measurements. Six dust events (DE) have been identified during the study period with average values of Aqua-MODIS AOD550 and Microtops-II AOD500 over Patiala as and , respectively while Aura-OMI AI exhibits high values ranging from 2.01 to 6.74. The Ångström coefficients α380–870 and β range from 0.12 to 0.31 and 0.95 to 1.40, respectively. The measured spectral AODs, the OPAC-derived aerosol properties and the surface albedo obtained from MODIS were used as main inputs in SBDART model for the calculation of aerosol radiative forcing (ARF) over Patiala. The ARF at surface (SRF) and top of atmosphere (TOA) ranges from ~−50 to −100 Wm−2 and from ~−10 to −25 Wm−2, respectively during the maximum of dust storms. The radiative forcing efficiency was found to be −66 Wm−2AOD−1 at SRF and −14 Wm−2AOD−1 at TOA. High values of ARF in the atmosphere (ATM), ranging between ~+40 Wm−2 and +80.0 Wm−2 during the DE days, might have significant effect on the warming of the lower and middle atmosphere and, hence, on climate over northwestern India.