Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2012, Article ID 956814, 13 pages
http://dx.doi.org/10.1155/2012/956814
Research Article

Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India

1Physics Department, Punjabi University, Patiala 147002, India
2Research and Technology Development Centre, Sharda University, Greater Noida 201306, India

Received 9 November 2011; Revised 1 March 2012; Accepted 20 March 2012

Academic Editor: Aristides Bartzokas

Copyright © 2012 Deepti Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Charlson and J. Heintzenberg, Aerosol Forcing of Climate, John Wiley and Sons, Chichester, UK, 1995.
  2. J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” Journal of Geophysical Research, vol. 102, no. D6, pp. 6831–6864, 1997. View at Google Scholar · View at Scopus
  3. S. A. Christopher, J. Wang, Q. Ji, and S. C. Tsay, “Estimation of diurnal shortwave dust aerosol radiative forcing during PRIDE,” Journal of Geophysical Research, vol. 108, no. D19, Article ID 8596, 12 pages, 2003. View at Google Scholar · View at Scopus
  4. D. Tanre, J. Haywood, J. Pelon et al., “Measurement and modeling of the Saharan dust radiative impact: overview of the Saharan Dust Experiment (SHADE),” Journal of Geophysical Research, vol. 108, no. D18, Article ID D8574, 2003. View at Google Scholar
  5. R. A. Duce, “Sources, distributions, and fluxes of mineral aerosols and their relationship to climate,” in Aerosol Forcing of Climate, R. Charlson and J. Heintzenberg, Eds., pp. 43–72, Wiley, New York, NY, USA, 1995. View at Google Scholar
  6. T. Claquin, M. Schulz, Y. Balkanski, and O. Boucher, “Uncertainties in assessing radiative forcing by mineral dust,” Tellus B, vol. 50, no. 5, pp. 491–505, 1998. View at Google Scholar · View at Scopus
  7. A. Di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” Journal of Geophysical Research, vol. 106, no. D10, pp. 10335–10347, 2001. View at Google Scholar · View at Scopus
  8. J. H. Seinfeld, G. R. Carmichael, R. Arimoto et al., “ACE-ASIA: regional climatic and atmospheric chemical effects of Asian dust and pollution,” Bulletin of the American Meteorological Society, vol. 85, no. 3, pp. 367–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. K. Das and A. Jayaraman, “Role of black carbon in aerosol properties and radiative forcing over western India during premonsoon period,” Atmospheric Research, vol. 102, no. 3, pp. 320–334, 2011. View at Google Scholar
  10. I. Tegen, A. A. Lacis, and I. Fung, “The influence on climate forcing of mineral aerosols from disturbed soils,” Nature, vol. 380, no. 6573, pp. 419–422, 1996. View at Google Scholar · View at Scopus
  11. P. Ginoux, M. Chin, I. Tegen et al., “Sources and distributions of dust aerosols simulated with the GOCART model,” Journal of Geophysical Research, vol. 106, no. D17, pp. 20255–20273, 2001. View at Google Scholar · View at Scopus
  12. P. Alpert, P. Kishcha, A. Shtivelman, S. O. Krichak, and J. H. Joseph, “Vertical distribution of Saharan dust based on 2.5-year model predictions,” Atmospheric Research, vol. 70, no. 2, pp. 109–130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. P. Singh, A. K. Prasad, V. K. Kayetha, and M. Kafatos, “Enhancement of oceanic parameters associated with dust storms using satellite data,” Journal of Geophysical Research, vol. 113, Article ID C11008, 13 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. P. T. Nastos, N. A. Kampanis, K. N. Giaouzaki, and A. Matzarakis, “Environmental impacts on human health during a Saharan dust episode at Crete Island, Greece,” Meteorologische Zeitschrift, vol. 20, no. 5, pp. 517–529, 2011. View at Google Scholar
  15. C. Moulin, C. E. Lambert, U. Dayan et al., “Satellite climatology of African dust transport in the Mediterranean atmosphere,” Journal of Geophysical Research, vol. 103, no. D11, pp. 13137–13144, 1998. View at Google Scholar · View at Scopus
  16. J. M. Prospero, “Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality,” Journal of Geophysical Research, vol. 104, no. D13, pp. 15917–15927, 1999. View at Google Scholar · View at Scopus
  17. R. Washington, M. Todd, N. J. Middleton, and A. S. Goudie, “Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations,” Annals of the Association of American Geographers, vol. 93, no. 2, pp. 297–313, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. H. El-Askary, R. Gautam, R. P. Singh, and M. Kafatos, “Dust storms detection over the Indo-Gangetic basin using multi sensor data,” Advances in Space Research, vol. 37, no. 4, pp. 728–733, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. K. V. S. Badarinath, S. K. Kharol, D. G. Kaskaoutis, and H. D. Kambezidis, “Dust storm over Indian region and its impact on the ground reaching solar radiation—a case study using multi-satellite data and ground measurements,” Science of Total Environment, vol. 384, pp. 316–332, 2007. View at Google Scholar
  20. R. Gautam, Z. Liu, R. P. Singh, and N. C. Hsu, “Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data,” Journal of Geophysical Research Letters, vol. 36, no. 6, Article ID L06813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. R. Sikka, “Desert climate and its dynamics,” Current Science, vol. 72, no. 1, pp. 35–46, 1997. View at Google Scholar · View at Scopus
  22. D. Ganguly, A. Jayaraman, and H. Gadhavi, “Physical and optical properties of aerosols over an urban location in western India: seasonal variabilities,” Journal of Geophysical Research, vol. 111, Article ID D24206, 21 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Kedia and S. Ramachandran, “Seasonal variations in aerosol characteristics over an urban location and a remote site in western India,” Atmospheric Environment, vol. 45, no. 12, pp. 2120–2128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. P. Singh, S. Dey, S. N. Tripathi, V. Tare, and B. Holben, “Variability of aerosol parameters over Kanpur, northern India,” Journal of Geophysical Research, vol. 109, Article ID D23206, 14 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Dey, S. N. Tripathi, R. P. Singh, and B. N. Holben, “Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin,” Journal of Geophysical Research, vol. 109, Article ID D20211, 13 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. K. Prasad and R. P. Singh, “Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic basin using AERONET and MODIS data,” Journal of Geophysical Research, vol. 112, Article ID D09208, 2007. View at Google Scholar
  27. A. K. Srivastava, S. N. Tripathi, S. Dey, V. P. Kanawade, and S. Tiwari, “Inferring aerosol types over the Indo-Gangetic basin from ground based sunphotometer measurements,” Atmospheric Research, vol. 109-110, pp. 64–75, 2012. View at Publisher · View at Google Scholar
  28. A. P. Mitra and C. Sharma, “Indian aerosols: present status,” Chemosphere, vol. 49, no. 9, pp. 1175–1190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Singh, D. Singh, and P. Pant, “Aerosol characteristics at Patiala during ICARB—2006,” Journal of Earth System Science, vol. 117, no. 1, pp. 407–411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Sharma, Y. N. V. M. Kiran, and K. K. Shandilya, “Investigations into formation of atmospheric sulfate under high PM10 concentration,” Atmospheric Environment, vol. 37, no. 14, pp. 2005–2013, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Ganguly, A. Jayaraman, T. A. Rajesh, and H. Gadhavi, “Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing,” Journal of Geophysical Research, vol. 111, Article ID D15217, 15 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Singh, S. Nath, R. Kohli, and R. Singh, “Aerosols over Delhi during pre-monsoon months: characteristics and effects on surface radiation forcing,” Geophysical Research Letters, vol. 32, Article ID L13808, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Singh, K. Soni, T. Bano, R. S. Tanwar, S. Nath, and B. C. Arya, “Clear sky direct aerosol radiative forcing variations over mega-city Delhi,” Annales Geophysicae, vol. 28, no. 5, pp. 1157–1166, 2010. View at Google Scholar
  34. A. K. Srivastava, S. Singh, S. Tiwari, and D. S. Bisht, “Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic basin,” Environmental Science Pollution Research. In press.
  35. P. Hedge, P. Pant, M. Naja, U. C. Dumka, and R. Sagar, “South Asian dust episode in June 2006: aerosol observations in the central Himalayas,” Journal of Geophysical Research Letters, vol. 34, Article ID L23802, 2007. View at Google Scholar
  36. A. K. Prasad, S. Singh, S. S. Chauhan, M. K. Srivastava, R. P. Singh, and R. Singh, “Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms,” Atmospheric Environment, vol. 41, no. 29, pp. 6289–6301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Pandithurai, S. Dipu, K. K. Dani et al., “Aerosol radiative forcing during dust events over New Delhi, India,” Journal of Geophysical Research D, vol. 113, Article ID D13209, 13 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. P. Guleria, J. C. Kuniyal, P. S. Rawat et al., “The assessment of aerosol optical properties over Mohal in the northwestern Indian Himalayas using satellite and ground-based measurements and an influence of aerosol transport on aerosol radiative forcing,” Meteorology and Atmospheric Physics, pp. 1–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. K. V. S. Badarinath, S. K. Kharol, A. R. Sharma, and V. K. Prasad, “Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic Plains using multi-satellite remote sensing datasets,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 71, no. 12, pp. 1267–1276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. R. Sharma, S. K. Kharol, K. V. S. Badarinath, and D. Singh, “Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India,” Annales Geophysicae, vol. 28, no. 2, pp. 367–379, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Morys, F. M. Mims III, S. Hagerup et al., “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer,” Journal of Geophysical Research, vol. 106, no. D13, pp. 14573–14582, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. J. N. Porter, M. Miller, C. Pietras, and C. Motell, “Ship-based sun photometer measurements using microtops sun photometers,” Journal of Atmospheric and Oceanic Technology, vol. 18, no. 5, pp. 765–774, 2001. View at Google Scholar · View at Scopus
  43. A. Ångström, “The parameters of atmospheric turbidity,” Tellus, vol. 16, no. 1, pp. 64–75, 1964. View at Google Scholar · View at Scopus
  44. T. F. Eck, B. N. Holben, J. S. Reid et al., “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” Journal of Geophysical Research, vol. 104, no. D24, pp. 31333–31349, 1999. View at Google Scholar · View at Scopus
  45. D. G. Kaskaoutis, M. C. R. Kalapureddy, K. K. Moorthy et al., “eterogeneity in pre-monsoon aerosol types over the Arabian Sea deduced from shipboard measurements of spectral AODs,” Atmospheric Chemistry and Physics, vol. 10, no. 10, pp. 4893–4908, 2010. View at Google Scholar
  46. R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, “Second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance,” Journal of Geophysical Research D, vol. 112, Article ID D13211, 21 pages, 2007. View at Google Scholar
  47. Y. Shi, J. Zhang, J. S. Reid, B. Holben, E. J. Hyer, and C. Curtis, “An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation,” Atmospheric Chemistry and Physics, vol. 11, no. 2, pp. 557–565, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. R. C. Levy, L. A. Remer, R. G. Kleidman et al., “Global evaluation of the Collection 5 MODIS dark-target aerosol products over land,” Atmospheric Chemistry and Physics Discussions, vol. 10, no. 6, pp. 14815–14873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. L. A. Remer, Y. J. Kaufman, D. Tanré et al., “The MODIS aerosol algorithm, products, and validation,” Journal of the Atmospheric Sciences, vol. 62, no. 4, pp. 947–973, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. O. Torres, P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason, “Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis,” Journal of Geophysical Research, vol. 103, no. D14, pp. 17099–17110, 1998. View at Google Scholar · View at Scopus
  51. D. G. Kaskaoutis, P. T. Nastos, P. G. Kosmopoulos, H. D. Kambezidis, S. K. Kharol, and K. V. S. Badarinath, “The Aura-OMI Aerosol Index distribution over Greece,” Atmospheric Research, vol. 98, no. 1, pp. 28–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. P. F. Levelt, G. H. J. van den Oord, M. R. Dobber et al., “The ozone monitoring instrument,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 5, pp. 1093–1100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. P. F. Levelt, E. Hilsenrath, G. W. Leppelmeier et al., “Science objectives of the ozone monitoring instrument,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 5, pp. 1199–1208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Ahn, O. Torres, and P. K. Bhartia, “Comparison of ozone monitoring instrument UV aerosol products with AQUA/Moderate resolution Imaging spectroradiometer and multiangle imaging spectroradiometer observations in 2006,” Journal of Geophysical Research D, vol. 113, Article ID D16S27, 13 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. R. R. Draxler and G. D. Rolph, HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory, Silver Spring, Md, USA, 2003, http://www.arl.noaa.gov/ready/hysplit4.html.
  56. D. G. Kaskaoutis, P. G. Kosmopoulos, H. D. Kambezidis, and P. T. Nastos, “Identification of different aerosol types over Athens, Greece. The influence of transport,” Advances in Meteorology, vol. 2010, Article ID 168346, 12 pages, 2010. View at Publisher · View at Google Scholar
  57. N. J. Middleton, “Dust storms in the Middle East,” Journal of Arid Environments, vol. 10, no. 2, pp. 83–96, 1986. View at Google Scholar · View at Scopus
  58. R. Gautam, N. C. Hsu, S. C. Tsay et al., “Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon Season,” Atmospheric Chemistry and Physics Discussions, vol. 11, no. 5, pp. 15697–15743, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Chinnam, S. Dey, S. N. Tripathi, and M. Sharma, “Dust events in Kanpur, northern India: chemical evidence for source and implications to radiative forcing,” Journal of Geophysical Research Letters, vol. 33, no. 8, Article ID L08803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. K. K. Moorthy, S. S. Babu, S. K. Satheesh, J. Srinivasan, and C. B. S. Dutt, “Dust absorption over the “Great Indian desert” inferred using ground-based and satellite remote sensing,” Journal of Geophysical Research, vol. 112, Article ID D09206, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. S. K. Satheesh and J. Srinivasan, “Enhanced aerosol loading over Arabian Sea during the pre-monsoon season: natural or anthropogenic?” Geophysical Research Letters, vol. 29, no. 18, Article ID 1874, 4 pages, 2002. View at Google Scholar · View at Scopus
  62. F. E. Volz, “Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmung der Wellenlaengenabhaengigkeit der Dunsttruebung,” Archiv für Meteorologie, Geophysik und Bioklimatologie B, vol. 10, pp. 100–131, 1959. View at Google Scholar
  63. D. G. Kaskaoutis and H. D. Kambezidis, “Comparison of the Ångström parameters retrieval in different spectral ranges with the use of different techniques,” Meteorology and Atmospheric Physics, vol. 99, no. 3-4, pp. 233–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. D. G. Kaskaoutis, H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath, “Aerosol climatology: dependence of the Ångström exponent on wavelength over four AERONET sites,” Atmospheric Chemistry and Physics Discussions, vol. 7, no. 3, pp. 7347–7397, 2007. View at Google Scholar · View at Scopus
  65. N. Hatzianastassiou, C. Matsoukas, A. Fotiadi et al., “Global distribution of Earth's surface shortwave radiation budget,” Atmospheric Chemistry and Physics, vol. 5, no. 10, pp. 2847–2867, 2005. View at Google Scholar · View at Scopus
  66. S. K. Satheesh, V. Vinoj, and K. K. Moorthy, “Radiative effects of aerosols at an urban location in southern India: observations versus model,” Atmospheric Environment, vol. 44, no. 39, pp. 5295–5304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bulletin of the American Meteorological Society, vol. 79, no. 5, pp. 831–844, 1998. View at Google Scholar · View at Scopus
  68. S. S. Babu, S. K. Satheesh, and K. K. Moorthy, “Aerosol radiative forcing due to enhanced black carbon at an urban site in India,” Geophysical Research Letters, vol. 29, no. 18, Article ID 1880, 4 pages, 2002. View at Google Scholar · View at Scopus
  69. S. K. Satheesh, V. Ramanathan, B. N. Holben et al., “Physical, chemical and radiative properties of Indian ocean aerosols,” Journal of Geophysical Research, vol. 107, no. D23, Article ID 4725, 13 pages, 2002. View at Publisher · View at Google Scholar
  70. S. K. Satheesh, J. Srinivasan, and K. K. Moorthy, “Spatial and temporal heterogeneity in aerosol properties and radiative forcing over Bay of Bengal: sources and role of aerosol transport,” Journal of Geophysical Research, vol. 111, Article ID D08202, 10 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Soni, S. Singh, T. Bano, R. S. Tanwar, S. Nath, and B. C. Arya, “Variations in single scattering albedo and Angstrom absorption exponent during different seasons at Delhi, India,” Atmospheric Environment, vol. 44, no. 35, pp. 4355–4363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. S. S. Babu, K. K. Moorthy, and S. K. Satheesh, “Temporal heterogeneity in aerosol characteristics and the resulting radiative impacts at a tropical coastal station. Part 2: direct short wave radiative forcing,” Annales Geophysicae, vol. 25, no. 11, pp. 2309–2320, 2007. View at Google Scholar · View at Scopus
  73. P. Ricchiazzi, S. Yang, C. Gautier, and D. Sowle, “SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere,” Bulletin of the American Meteorological Society, vol. 79, no. 10, pp. 2101–2114, 1998. View at Google Scholar · View at Scopus
  74. K. K. Moorthy, S. S. Babu, and S. K. Satheesh, “Aerosol characteristics and radiative impacts over the Arabian Sea during the intermonsoon season: results from ARMEX field campaign,” Journal of the Atmospheric Sciences, vol. 62, no. 1, pp. 192–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Pant, P. Hedge, U. C. Dumka et al., “Aerosol characteristics at high altitude location in central Himalayas: optical properties and radiative forcing,” Journal of Geophysical Research, vol. 111, Article ID D17206, 2006. View at Google Scholar
  76. D. Santos, M. J. Costa, and A. M. Silva, “Direct SW aerosol radiative forcing over Portugal,” Atmospheric Chemistry and Physics, vol. 8, no. 19, pp. 5771–5786, 2008. View at Google Scholar · View at Scopus
  77. R. Gautam, N. C. Hsu, and K. M. Lau, “Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic plains: implications for regional climate warming,” Journal of Geophysical Research D, vol. 115, no. 17, Article ID D17208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Dey and S. N. Tripathi, “Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: long-term (2001–2005) observations and implications to regional climate,” Journal of Geophysical Research, vol. 113, Article ID D04212, 20 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Atmosphere: aerosols, climate, and the hydrological cycle,” Science, vol. 294, no. 5549, pp. 2119–2124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. V. Ramanathan, M. V. Ramana, G. Roberts et al., “Warming trends in Asia amplified by brown cloud solar absorption,” Nature, vol. 448, no. 7153, pp. 575–578, 2007. View at Publisher · View at Google Scholar · View at Scopus