Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013 (2013), Article ID 393926, 15 pages
http://dx.doi.org/10.1155/2013/393926
Research Article

Comparison of Spheroidal Carbonaceous Particle Data with Modelled Atmospheric Black Carbon Concentration and Deposition and Air Mass Sources in Northern Europe, 1850–2010

1Department of Environmental Sciences, Environmental Change Research Unit (ECRU), P.O. Box 65, University of Helsinki FIN-00014, Helsinki, Finland
2Arctic Centre, University of Lapland, P.O. Box 122, 96101 Rovaniemi, Finland
3Center for International Climate and Environmental Research-Oslo (CICERO), P.O. Box 1129, Blindern, 0318 Oslo, Norway
4Department of Applied Environmental Science, Atmospheric Science Unit (ITM), Stockholm University, Svante Arrhenius Väg 8, 11418 Stockholm, Sweden
5NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
6Environmental Change Research Centre, Department of Geography, University College London, WC1E 6BT, UK

Received 8 March 2013; Accepted 9 July 2013

Academic Editor: Junji Cao

Copyright © 2013 Meri Ruppel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Novakov, “The role of soot and primary oxidants in atmospheric chemistry,” Science of the Total Environment, vol. 36, pp. 1–10, 1984. View at Google Scholar · View at Scopus
  2. E. D. Goldberg, Black Carbon in the Environment, John Wiley & Sons, New York, NY, USA, 1985.
  3. J. I. Hedges, G. Eglinton, P. G. Hatcher et al., “The molecularly-uncharacterized component of nonliving organic matter in natural environments,” Organic Geochemistry, vol. 31, no. 10, pp. 945–958, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Masiello, “New directions in black carbon organic geochemistry,” Marine Chemistry, vol. 92, no. 1–4, pp. 201–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Elmquist, G. Cornelissen, Z. Kukulska, and Ö. Gustafsson, “Distinct oxidative stabilities of char versus soot black carbon: implications for quantification and environmental recalcitrance,” Global Biogeochemical Cycles, vol. 20, no. 2, Article ID GB2009, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Hammes, M. W. I. Schmidt, R. J. Smernik, L. A. Currie, W. P. Ball et al., “Comparison of quantification methods to measure fire-derived (black/elemental carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere,” Global Biogeochemical Cycles, vol. 21, Article ID GB3016, 2007. View at Publisher · View at Google Scholar
  7. N. L. Rose and B. Rippey, “The historical record of PAH, PCB, trace metal and fly-ash particle deposition at a remote lake in north-west Scotland,” Environmental Pollution, vol. 117, no. 1, pp. 121–132, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. N. L. Rose, S. Harlock, and P. G. Appleby, “The spatial and temporal distributions of spheroidal carbonaceous fly- ash particles (SCP) in the sediment records of European Mountain Lakes,” Water, Air, and Soil Pollution, vol. 113, no. 1–4, pp. 1–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. N. Cape, M. Coyle, and P. Dumitrean, “The atmospheric lifetime of black carbon,” Atmospheric Environment, vol. 59, pp. 256–263, 2012. View at Google Scholar
  10. R. Jaenicke, “Atmospheric aerosols and global climate,” Journal of Aerosol Science, vol. 11, no. 5-6, pp. 577–588, 1980. View at Google Scholar · View at Scopus
  11. M. Wik and I. Renberg, “Recent atmospheric deposition in Sweden of carbonaceous particles from fossil-fuel combustion surveyed using lake sediments,” Ambio, vol. 20, no. 7, pp. 289–292, 1991. View at Google Scholar · View at Scopus
  12. N. L. Rose and S. Juggins, “A spatial relationship between carbonaceous particles in lake sediments and sulphur deposition,” Atmospheric Environment, vol. 28, no. 2, pp. 177–183, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. N. L. Rose, C. L. Rose, J. F. Boyle, and P. G. Appleby, “Lake-sediment evidence for local and remote sources of atmospherically deposited pollutants on Svalbard,” Journal of Paleolimnology, vol. 31, no. 4, pp. 499–513, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Hicks and E. Isaksson, “Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Svalbard snow and ice,” Journal of Geophysical Research D, vol. 111, no. 2, Article ID D02113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Bindler, I. Renberg, P. G. Appleby, N. J. Anderson, and N. L. Rose, “Mercury accumulation rates and spatial patterns in lake sediments from west greenland: a coast to ice margin transect,” Environmental Science and Technology, vol. 35, no. 9, pp. 1736–1741, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. N. C. Doubleday, M. S. V. Douglas, and J. P. Smol, “Paleoenvironmental studies of black carbon deposition in the High Arctic: a case study from Northern Ellesmere Island,” Science of the Total Environment, vol. 160-161, pp. 661–668, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. C. C. Martins, M. C. Bícego, N. L. Rose et al., “Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica,” Environmental Pollution, vol. 158, no. 1, pp. 192–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. N. L. Rose, V. J. Jones, P. E. Noon, D. A. Hodgson, R. J. Flower, and P. G. Appleby, “Long-range transport of pollutants to the Falkland Islands and Antarctica: evidence from lake sediment fly-ash particle records,” Environmental Science and Technology, vol. 46, no. 18, pp. 9881–9889, 2012. View at Google Scholar
  19. D. Broman, C. Näf, M. Wik, and I. Renberg, “The importance of spheroidal carbonaceous particles for the distribution of particulate polycyclic aromatic hydrocarbons in an estuarine-like urban coastal water area,” Chemosphere, vol. 21, no. 1-2, pp. 263–286, 1990. View at Google Scholar
  20. N. L. Rose and H. Yang, “Temporal and spatial patterns of spheroidal carbonaceous particles (SCPs) in sediments, soils and deposition at Lochnagar,” in Lochnagar: The Natural History of a Mountain Lake. Developments in Paleoenvironmental Research, N. L. Rose, Ed., pp. 403–423, Springer, Dordrecht, The Netherlands, 2007. View at Google Scholar
  21. N. L. Rose, “Fly-ash particles,” in Tracking Environmental Change Using Lake Sediments, W. M. Last and J. P. Smol, Eds., vol. 2 of Physical and Geochemical Methods, pp. 319–349, Kluwer Academic, Dordrecht, The Netherlands, 2001. View at Google Scholar
  22. R. B. Skeie, T. Berntsen, G. Myhre et al., “Black carbon in the atmosphere and snow, from pre-industrial times until present,” Atmospheric Chemistry and Physics, vol. 11, no. 14, pp. 6809–6836, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J.-F. Lamarque, T. C. Bond, V. Eyring et al., “Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application,” Atmospheric Chemistry and Physics, vol. 10, no. 15, pp. 7017–7039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. H. Lee, J. F. Lamarque, M. G. Flanner, C. Jiao, D. T. Shindell et al., “Evaluation of preindustrial to present-day black carbon and its albedo forcing from ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison Project),” Atmospheric Chemistry and Physics Discussion, vol. 12, pp. 21713–21778, 2012. View at Publisher · View at Google Scholar
  25. J. R. McConnell, R. Edwards, G. L. Kok et al., “20th-Century industrial black carbon emissions altered arctic climate forcing,” Science, vol. 317, no. 5843, pp. 1381–1384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. R. McConnell, “New Directions: historical black carbon and other ice core aerosol records in the Arctic for GCM evaluation,” Atmospheric Environment, vol. 44, no. 21-22, pp. 2665–2666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. R. McConnell and R. Edwards, “Coal burning leaves toxic heavy metal legacy in the Arctic,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12140–12144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. F. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni et al., “The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics,” Geoscientific Model Development, vol. 6, pp. 179–206, 2013. View at Google Scholar
  29. T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen et al., “Bounding the role of black carbon in the climate system: a scientific assessment,” Journal of Geophysical Research-Atmospheres, vol. 118, pp. 1–173, 2013. View at Publisher · View at Google Scholar
  30. N. L. Rose, “Carbonaceous particle record in lake sediments from the Arctic and other remote areas of the Northern Hemisphere,” Science of the Total Environment, vol. 160-161, pp. 487–496, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Doherty, S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt, “Light-absorbing impurities in Arctic snow,” Atmospheric Chemistry and Physics, vol. 10, no. 23, pp. 11647–11680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. T. Lund and T. Berntsen, “Parameterization of black carbon aging in the OsloCTM2 and implications for regional transport to the Arctic,” Atmospheric Chemistry and Physics, vol. 12, no. 15, pp. 6999–7014, 2012. View at Publisher · View at Google Scholar
  33. T. Berntsen, J. Fuglestvedt, G. Myhre, F. Stordal, and T. F. Berglen, “Abatement of greenhouse gases: does location matter?” Climatic Change, vol. 74, no. 4, pp. 377–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Renberg and H. Hansson, “The HTH sediment corer,” Journal of Paleolimnology, vol. 40, no. 2, pp. 655–659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. Glew, “A new trigger mechanism for sediment samplers,” Journal of Paleolimnology, vol. 2, no. 4, pp. 241–243, 1989. View at Publisher · View at Google Scholar · View at Scopus
  36. P. G. Appleby, P. J. Nolan, D. W. Gifford et al., “210Pb dating by low background gamma counting,” Hydrobiologia, vol. 143, no. 1, pp. 21–27, 1986. View at Publisher · View at Google Scholar · View at Scopus
  37. P. G. Appleby, N. Richardson, and P. J. Nolan, “Self-absorption corrections for well-type germanium detectors,” Nuclear Instruments and Methods in Physics Research B, vol. 71, no. 2, pp. 228–233, 1992. View at Google Scholar · View at Scopus
  38. N. L. Rose, “A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from sediments,” Journal of Paleolimnology, vol. 11, no. 2, pp. 201–204, 1994. View at Google Scholar · View at Scopus
  39. N. L. Rose, “Quality control in the analysis of lake sediments for spheroidal carbonaceous particles,” Limnology and Oceanography, vol. 6, pp. 172–179, 2008. View at Google Scholar · View at Scopus
  40. M. J. Prather, “Numerical advection by conservation of 2nd-order moments,” Journal of Geophysical Research-Atmospheres, vol. 91, no. D6, pp. 6671–6681, 1986. View at Publisher · View at Google Scholar
  41. M. Tiedtke, “A comprehensive mass flux scheme for cumulus parameterization in large-scale models,” Monthly Weather Review, vol. 117, no. 8, pp. 1779–1800, 1989. View at Google Scholar · View at Scopus
  42. A. A. M. Holtslag, E. I. F. De Bruijn, and H.-L. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Monthly Weather Review, vol. 118, no. 8, pp. 1561–1575, 1990. View at Google Scholar · View at Scopus
  43. A. M. Thomson, K. V. Calvin, S. J. Smith et al., “RCP4.5: a pathway for stabilization of radiative forcing by 2100,” Climatic Change, vol. 109, no. 1, pp. 77–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. W. F. Cooke, C. Liousse, H. Cachier, and J. Feichter, “Construction of a 1 degrees x 1 degrees fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model,” Journal of Geophysical Research D, vol. 104, no. 18, pp. 22137–22162, 1999. View at Google Scholar · View at Scopus
  45. E. Vignati, J. Wilson, and P. Stier, “M7: an efficient size-resolved aerosol microphysics module for large-scale aerosol transport models,” Journal of Geophysical Research D, vol. 109, no. D22, article 27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Stohl, C. Forster, A. Frank, P. Seibert, and G. Wotawa, “Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2,” Atmospheric Chemistry and Physics, vol. 5, no. 9, pp. 2461–2474, 2005. View at Google Scholar · View at Scopus
  47. A. Stohl and D. J. Thomson, “A density correction for Lagrangian particle dispersion models,” Boundary-Layer Meteorology, vol. 90, no. 1, pp. 155–167, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Stohl, A. J. Prata, S. Eckhardt et al., “Determination of time-and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption,” Atmospheric Chemistry and Physics, vol. 11, no. 9, pp. 4333–4351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. J. L. Palau, J. Meliá, D. Segarra, G. Pérez-Landa, F. Santa-Cruz, and M. M. Millán, “Seasonal differences in SO2 ground-level impacts from a power plant plume on complex terrain,” Environmental Monitoring and Assessment, vol. 149, no. 1–4, pp. 445–455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Stohl, “Characteristics of atmospheric transport into the Arctic troposphere,” Journal of Geophysical Research, vol. 111, no. D11, pp. 1–17, 2006. View at Publisher · View at Google Scholar
  51. D. P. Dee, S. M. Uppala, A. J. Simmons et al., “The ERA-Interim reanalysis: configuration and performance of the data assimilation system,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 656, pp. 553–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. S. M. Uppala, P. W. Kållberg, A. J. Simmons et al. et al., “The ERA-40 re-analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 2961–3012, 2005, http://reanalyses.org/atmosphere/era40-references. View at Google Scholar
  53. A. Korhola, S. Sorvari, M. Rautio et al., “A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajärvi in Finnish Lapland,” Journal of Paleolimnology, vol. 28, no. 1, pp. 59–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. N. L. Rose, S. Juggins, and J. Watt, “The characterisation of carbonaceous fly-ash particles from major European fossil-fuel types and applications to environmental samples,” Atmospheric Environment, vol. 33, no. 17, pp. 2699–2713, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. T. S. Traaen, T. Moiseenko, V. Dauvalter, S. Rognerud, A. Hemiksen, and L. Kudravseva, “Acidification of surface waters, nickel and copper in water and lake sediments in the Soviet-Norwegian border areas,” Progress Report to Norwegian-Soviet Environmental Protection Commission, 1991. View at Google Scholar
  56. A. Korhola, J. Weckström, and M. Nyman, “Predicting the long-term acidification trends in small subarctic lakes using diatoms,” Journal of Applied Ecology, vol. 36, no. 6, pp. 1021–1034, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Muri, S. G. Wakeham, and N. L. Rose, “Records of atmospheric delivery of pyrolysis-derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia),” Environmental Pollution, vol. 139, no. 3, pp. 461–468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. Ö. Gustafsson, F. Haghseta, C. Chan, J. Macfarlane, and P. M. Gschwend, “Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability,” Environmental Science and Technology, vol. 31, no. 1, pp. 203–209, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. Ö. Gustafsson, T. D. Bucheli, Z. Kukulska et al., “Evaluation of a protocol for the quantification of black carbon in sediments,” Global Biogeochemical Cycles, vol. 15, no. 4, pp. 881–890, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. T. C. Bond, D. G. Streets, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont, “A technology-based global inventory of black and organic carbon emissions from combustion,” Journal of Geophysical Research D, vol. 109, no. D14, article 27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. T. C. Bond, E. Bhardwaj, R. Dong et al., “Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000,” Global Biogeochemical Cycles, vol. 21, no. 2, Article ID GB2018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Elmquist, Z. Zencak, and Ö. Gustafsson, “A 700 year sediment record of black carbon and polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden,” Environmental Science and Technology, vol. 41, no. 20, pp. 6926–6932, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. D. T. Shindell, M. Chin, F. Dentener et al., “A multi-model assessment of pollution transport to the Arctic,” Atmospheric Chemistry and Physics, vol. 8, no. 17, pp. 5353–5372, 2008. View at Google Scholar · View at Scopus
  64. Y. Han, J. Cao, Z. An et al., “Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments,” Chemosphere, vol. 69, no. 4, pp. 526–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Han, J. Cao, J. C. Chow et al., “Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC,” Chemosphere, vol. 69, no. 4, pp. 569–574, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Husain, A. J. Khan, T. Ahmed, K. Swami, A. Bari et al., “Trends in atmospheric elemental carbon from 1835 to 2005,” Journal of Geophysical Research, vol. 113, no. D13102, 2008. View at Publisher · View at Google Scholar
  67. Z. Zencak, M. Elmquist, and Ö. Gustafsson, “Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method,” Atmospheric Environment, vol. 41, no. 36, pp. 7895–7906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Vignati, M. Karl, M. Krol, J. Wilson, P. Stier, and F. Cavalli, “Sources of uncertainties in modelling black carbon at the global scale,” Atmospheric Chemistry and Physics, vol. 10, no. 6, pp. 2595–2611, 2010. View at Google Scholar · View at Scopus