Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 545463, 15 pages
Research Article

Interannual Variability of Northern Hemisphere Storm Tracks in Coarse-Gridded Datasets

1Department of Earth and Atmospheric Sciences, Saint Louis University, 3642 Lindell Boulevard, O’Neil Hall 205, St. Louis, MO 63108, USA
2NOAA’s National Weather Service, National Centers for Environmental Prediction, Climate Prediction Center, 5830 University Research Court, College Park, MD 20740, USA

Received 20 August 2013; Revised 22 October 2013; Accepted 12 November 2013

Academic Editor: Igor I. Mokhov

Copyright © 2013 Timothy Paul Eichler and Jon Gottschalck. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Extratropical cyclones exert a large socioeconomic impact. It is therefore important to assess their interannual variability. We generate cyclone tracks from the National Center for Environmental Prediction’s Reanalysis I and the European Centre for Medium Range Prediction ERA-40 reanalysis datasets. To investigate the interannual variability of cyclone tracks, we compare the effects of El Niño, the North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), and the Pacific North American Pattern (PNA) on cyclone tracks. Composite analysis shows similar results for the impacts of El Niño, NAO, and the PNA on NH storm tracks. Although it is encouraging, we also found regional differences when comparing reanalysis datasets. The results for the IOD suggested a wave-like alteration of cyclone frequency across the northern US/Canada possibly related to Rossby wave propagation. Partial correlation demonstrates that although El Niño affects cyclone frequency in the North Pacific and along the US east coast, its impact on the North Pacific is accomplished via the PNA. Similarly, the PNA’s impact on US east coast storms is modulated via El Niño. In contrast, the impacts of the NAO extend as far west as the North Pacific and are not influenced by either the PNA or El Niño.