Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 578350, 7 pages
http://dx.doi.org/10.1155/2013/578350
Research Article

A Comparison of Two Land Use Simulation Models under the RCP4.5 Scenario in China

1State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
2School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
3School of Information Engineering, China University of Geosciences, Wuhan 430074, China

Received 7 August 2013; Revised 13 November 2013; Accepted 13 November 2013

Academic Editor: Xiangzheng Deng

Copyright © 2013 Feng Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Vitousek, H. A. Mooney, J. Lubchenco, and J. M. Melillo, “Human domination of Earth's ecosystems,” Science, vol. 277, no. 5325, pp. 494–499, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Deng, C. Zhao, and H. Yan, “Systematic modeling of impacts of land use and land cover changes on regional climate: a review,” Advances in Meteorology, vol. 2013, Article ID 317678, 11 pages, 2013. View at Publisher · View at Google Scholar
  3. E. F. Lambin, X. Baulies, N. E. Bockstael et al., “Land-use and land-cover change (LUCC), implementation strategy,” IGBP Report 48, IHDP Report 10, IGBP, Stockholm, Sweden; IHDP, Bonn, Germany, 2000. View at Google Scholar
  4. B. L. Turner II, “Local faces, global flows: the role of land use and land cover in global environmental change,” Land Degradation & Rehabilitation, vol. 5, no. 2, pp. 71–78, 1994. View at Google Scholar · View at Scopus
  5. J. Y. Liu and X. Z. Deng, “Progress of the research methodologies on the temporal and spatial process of LUCC,” Chinese Science Bulletin, vol. 55, no. 14, pp. 1354–1362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Cao, C. Wu, and W. Yu, “Evaluation of land ecological service and its application in overall arrangement of land use,” Bulletin of Soil and Water Conservation, vol. 20, no. 2, pp. 197–200, 2006. View at Google Scholar
  7. Q. Jiang, X. Deng, H. Yan, D. Liu, and R. Qu, “Identification of food security in the mountainous guyuan prefecture of China by exploring changes of food production,” Journal of Food, Agriculture & Environment, vol. 10, no. 1, pp. 210–216, 2012. View at Google Scholar · View at Scopus
  8. X. Deng, F. Yin, Y. Lin, Q. Jin, and R. Qu, “Equilibrium analyses on structural changes of land uses in Jiangxi Province,” Journal of Food, Agriculture & Environment, vol. 10, no. 1, pp. 846–852, 2012. View at Google Scholar · View at Scopus
  9. Y. Hu, Y. Liu, and X. Deng, “Relativity analysis on land use and land cover change and optimal allocation of land resources,” Progress in Geography, vol. 23, no. 2, pp. 51–57, 2004. View at Google Scholar
  10. A. Flamenco-Sandoval, M. Martínez Ramos, and O. R. Masera, “Assessing implications of land-use and land-cover change dynamics for conservation of a highly diverse tropical rain forest,” Biological Conservation, vol. 138, no. 1-2, pp. 131–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Deng, H. Su, and J. Zhan, “Integration of multiple data sources to simulate the dynamics of land systems,” Sensors, vol. 8, no. 2, pp. 620–634, 2008. View at Google Scholar · View at Scopus
  12. Y. Cai, Y. Liu, Z. R. Yu, and P. H. Verburg, “Progress in spatial simulation of land use change-CLUE-s model and its application,” Progress in Geography, vol. 23, no. 4, pp. 63–71, 2004. View at Google Scholar
  13. J. Y. Liu and X. Z. Deng, “Progress of the research methodologies on the temporal and spatial process of LUCC,” Chinese Science Bulletin, vol. 55, no. 14, pp. 1354–1362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Brenkert, S. Kim, A. Smith, and H. Pitcher, “Model Documentation for the MiniCAM,” U.S. Department of Energy, PNNL-14337, 2003.
  15. H. Lee, Incorporating Agro-Ecologically Zoned Land Use Data and Land-Based Greenhouse Gases Emissions into the GTAP Framework, Centre for Global Trade Analysis, Purdue University, West Lafayette, Ind, USA, 2005.
  16. J. M. Burniaux and H. L. Lee, “Modelling land use change in GTAP,” 2005. View at Google Scholar
  17. R. Moss, M. Babiker, S. Brinkman, and E. Calvo, “Towards new scenarios for analysis ofemissions, climate change, impacts, and response strategies,” IPCC Expert Meeting Report, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2008. View at Google Scholar
  18. R. H. Moss, J. A. Edmonds, K. A. Hibbard et al., “The next generation of scenarios for climate change research and assessment,” Nature, vol. 463, no. 7282, pp. 747–756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Wise, K. Calvin, A. Thomson et al., “Implications of limiting CO2 concentrations for land use and energy,” Science, vol. 324, no. 5931, pp. 1183–1186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Edmonds, M. Wise, H. Pitcher, R. Richels, T. Wigley, and C. MacCracken, “An integrated assessment of climate change and the accelerated introduction of advanced energy technologies: an application of MiniCAM 1.0,” Mitigation and Adaptation Strategies for Global Change, vol. 1, no. 4, pp. 311–339, 1997. View at Google Scholar · View at Scopus
  21. J. Edmonds and J. Reilly, Global Energy: Assessing the Future, Oxford University Press, New York, NY, USA, 1985.
  22. R. D. Sands and J. A. Edmonds, “Climate change impacts for the conterminous USA: an integrated assessment—part 7: economic analysis of field crops and land use with climate change,” Climatic Change, vol. 69, no. 1, pp. 127–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. D. Sands and M. Leimbach, “Modeling agriculture and land use in an integrated assessment framework,” Climatic Change, vol. 56, no. 1-2, pp. 185–210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. T. M. L. Wigley and S. C. B. Raper, “Implications for climate and sea level of revised IPCC emissions scenarios,” Nature, vol. 357, no. 6376, pp. 293–300, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Hulme, T. Jiang, and T. M. L. Wigley, SCENGEN: A Climate Change Scenario Generator, a Software User Manual, Climatic Change Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK, 1995.
  26. J. M. Burniaux and T. Truong, “GTAP-E: an energy-environmental version of the GTAP model,” GTAP Technical Paper 16, Center for Global Trade Analysis, Purdue University, West Lafayette, Ind, USA, 2001. View at Google Scholar
  27. E. Ianchovichina and R. McDougall, “Structure of dynamic GTAP,” GTAP Technical Paper 17, Center for Global Trade Analysis, 2001, http://www.gtap.org/. View at Google Scholar
  28. X. Deng, J. Han, and F. Yin, “Net energy, CO2 emission and land-based cost-benefit analyses of Jatropha biodiesel: a case study of the Panzhihua region of Sichuan province in China,” Energies, vol. 5, pp. 2150–2164, 2012. View at Google Scholar
  29. A. Golub, Projecting the global economy to 2025: a dynamic general equilibrium approach [Ph.D. thesis], Purdue University, 2006.
  30. K. Riahi, A. Grübler, and N. Nakicenovic, “Scenarios of long-term socio-economic and environmental development under climate stabilization,” Technological Forecasting and Social Change, vol. 74, no. 7, pp. 887–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Hijioka, Y. Matsuoka, H. Nishimoto, T. Masui, and M. Kainuma, “Global GHG emission scenarios under GHG concentration stabilization targets,” Journal of Global Environment Engineering, vol. 13, pp. 97–108, 2008. View at Google Scholar · View at Scopus
  32. S. J. Smith and T. M. L. Wigley, “Multi-gas forcing stabilization with minicam,” The Energy Journal, vol. 27, pp. 373–391, 2006. View at Google Scholar · View at Scopus
  33. D. P. van Vuuren, B. Eickhout, P. L. Lucas, and M. G. J. den Elzen, “Long-term multi-gas scenarios to stabilise radiative forcing—exploring costs and benefits within an integrated assessment framework,” Energy Journal, vol. 27, pp. 201–233, 2006. View at Google Scholar · View at Scopus
  34. K. A. Hibbard, G. A. Meehl, P. M. Cox, and P. Friedlingstein, “A strategy for climate change stabilization experiments,” Eos, vol. 88, no. 20, pp. 217–221, 2007. View at Google Scholar · View at Scopus
  35. F. Wu, X. Deng, F. Yin, and Y. Yuan, “Projected changes of grassland productivity along the representative concentration pathways during 2010–2050 in China,” Advances in Meteorology, vol. 2013, Article ID 812723, 9 pages, 2013. View at Publisher · View at Google Scholar
  36. J. Liu, J. Zhan, and X. Deng, “Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era,” Ambio, vol. 34, no. 6, pp. 450–455, 2005. View at Google Scholar · View at Scopus