Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2013, Article ID 853098, 8 pages
http://dx.doi.org/10.1155/2013/853098
Research Article

Impacts of Cultivated Land Reclamation on the Climate and Grain Production in Northeast China in the Future 30 Years

1Institute of Geographic and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China
3School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
4State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China

Received 8 July 2013; Accepted 28 August 2013

Academic Editor: Xiangzheng Deng

Copyright © 2013 Qingling Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Ding and S. Dai, “Temperature variation in China during the last 100 years,” Meteorological Monthly, vol. 12, no. 1, pp. 19–26, 1994. View at Google Scholar
  2. X. Deng, J. Huang, S. Rozelle, and E. Uchida, “Economic growth and the expansion of urban land in China,” Urban Studies, vol. 47, no. 4, pp. 813–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Jiang, X. Deng, H. Yan, D. Liu, and R. Qu, “Identification of food security in the mountainous guyuan prefecture of China by exploring changes of food production,” Journal of Food, Agriculture & Environment, vol. 10, no. 1, pp. 210–216, 2012. View at Google Scholar · View at Scopus
  4. X. Deng, J. Huang, F. Qiao et al., “Impacts of El Nino-Southern Oscillation events on China's rice production,” Journal of Geographical Sciences, vol. 20, no. 1, pp. 3–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Sun, J. Yuan, and S. Lu, “The change and test of climate in Northeast China over the last 100 years,” Climatic and Environmental Research, vol. 11, no. 1, pp. 101–108, 2006. View at Google Scholar
  6. R. Betts, “Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation,” Tellus B, vol. 59, no. 3, pp. 602–615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Liu and X. Deng, “Impacts and mitigation of climate change on Chinese cities,” Current Opinion in Environmental Sustainability, vol. 3, no. 3, pp. 188–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Pielke, A. Pitman, D. Niyogi et al., “Land use/land cover changes and climate: Modeling analysis and observational evidence,” Wiley Interdisciplinary Reviews, vol. 2, no. 6, pp. 828–850, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. K. J. Anderson and E. DeLucia, “Study finds a better way to gauge the climate costs of land use changes,” Nature Climate Change, 2012. View at Google Scholar
  10. X. Deng, J. Huang, S. Rozelle, and E. Uchida, “Cultivated land conversion and potential agricultural productivity in China,” Land Use Policy, vol. 23, no. 4, pp. 372–384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Donner, “The impact of cropland cover on river nutrient levels in the Mississippi River Basin,” Global Ecology and Biogeography, vol. 12, no. 4, pp. 341–355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Chen, J. Chen, Y. Shi, and Y. Yamaguchi, “An automated approach for updating land cover maps based on integrated change detection and classification methods,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 71, pp. 86–95, 2012. View at Google Scholar
  13. G. B. Bonan, “Observational evidence for reduction of daily maximum temperature by Croplands in the Midwest United States,” Journal of Climate, vol. 14, no. 11, pp. 2430–2442, 2001. View at Google Scholar · View at Scopus
  14. D. B. Lobell, G. Bala, and P. B. Duffy, “Biogeophysical impacts of cropland management changes on climate,” Geophysical Research Letters, vol. 33, no. 6, Article ID L06708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Deng, C. Zhao, and H. Yan, “Systematic modeling of impacts of land use and land cover changes on regional climate: a review,” Advances in Meteorology, vol. 2013, Article ID 317678, 11 pages, 2013. View at Publisher · View at Google Scholar
  16. A. T. Peterson, M. A. Ortega-Huerta, J. Bartley et al., “Future projections for Mexican faunas under global climate change scenarios,” Nature, vol. 416, no. 6881, pp. 626–629, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. R. G. Pearson and T. P. Dawson, “Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?” Global Ecology and Biogeography, vol. 12, no. 5, pp. 361–371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. B. Araújo and M. New, “Ensemble forecasting of species distributions,” Trends in Ecology & Evolution, vol. 22, no. 1, pp. 42–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Murphy, D. M. H. Sexton, D. H. Barnett et al., “Quantification of modelling uncertainties in a large ensemble of climate change simulations,” Nature, vol. 430, no. 7001, pp. 768–772, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. H. Christensen and O. B. Christensen, “A summary of the PRUDENCE model projections of changes in European climate by the end of this century,” Climatic Change, vol. 81, no. 1, pp. 7–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. J. Hijmans and C. H. Graham, “The ability of climate envelope models to predict the effect of climate change on species distributions,” Global Change Biology, vol. 12, no. 12, pp. 2272–2281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Deng, Q. Jiang, J. Zhan, S. He, and Y. Lin, “Simulation on the dynamics of forest area changes in Northeast China,” Journal of Geographical Sciences, vol. 20, no. 4, pp. 495–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Deng, Q. Jiang, H. Su, and F. Wu, “Trace forest conversions in Northeast China with a 1-km area percentage data model,” Journal of Applied Remote Sensing, vol. 4, no. 1, Article ID 041893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Liu, M. Liu, D. Zhuang, Z. Zhang, and X. Deng, “Study on spatial pattern of land-use change in China during 1995-2000,” Science in China D, vol. 46, no. 4, pp. 373–384, 2003. View at Google Scholar · View at Scopus
  25. J. Liu, Z. Zhang, X. Xu et al., “Spatial patterns and driving forces of land use change in China during the early 21st century,” Journal of Geographical Sciences, vol. 20, no. 4, pp. 483–494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Wang, Y. Lou, and W. Zhang, “Impact of climate warming on crop plant in northeastern of China,” Meteorological Science and Technology, vol. 29, pp. 11–13, 2001. View at Google Scholar
  27. H. Sun, Q. Yang, S. Lu, and Y. Yang, “The contrast analysis on the average and extremum temperatre trend in Northeast China,” Journal of the Meteorological Sciences, vol. 26, no. 2, pp. 157–163, 2006. View at Google Scholar
  28. Z. Deng, Q. Wang, Q. Zhang et al., “Impact of climate warming and drying on food crops in northern China and the countermeasures,” Acta Ecologica Sinica, vol. 30, no. 22, pp. 6278–6288, 2010. View at Google Scholar · View at Scopus
  29. Q. Ma, “A simulating study on the influences of climate change on grain yield and the countermeasures in the Northeast China,” Acta Meteorologica Sinica, vol. 54, no. 4, pp. 484–492, 1996. View at Google Scholar
  30. S.-Q. Ma, Q. Wang, and X.-L. Luo, “Effect of climate change on maize (Zea mays) growth and yield based on stage sowing,” Acta Ecologica Sinica, vol. 28, no. 5, pp. 2131–2139, 2008. View at Google Scholar · View at Scopus