Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014, Article ID 206352, 12 pages
http://dx.doi.org/10.1155/2014/206352
Research Article

Aircraft Observations of Ice Particle Properties in Stratiform Precipitating Clouds

1Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China

Received 10 July 2013; Revised 16 February 2014; Accepted 28 February 2014; Published 14 April 2014

Academic Editor: Harry D. Kambezidis

Copyright © 2014 Tuanjie Hou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. McFarquhar and A. J. Heymsfield, “Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: results from CEPEX,” Journal of the Atmospheric Sciences, vol. 54, no. 17, pp. 2187–2200, 1997. View at Google Scholar · View at Scopus
  2. A. V. Korolev, G. A. Isaac, and J. Hallett, “Ice particle habits in Arctic clouds,” Geophysical Research Letters, vol. 26, no. 9, pp. 1299–1302, 1999. View at Google Scholar · View at Scopus
  3. M. T. Stoelinga, J. D. Locatelli, and C. P. Woods, “The occurence of “irregular” ice particles in stratiform clouds,” Journal of the Atmospheric Sciences, vol. 64, no. 7, pp. 2740–2750, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. J. Heymsfield, “Properties of tropical and midlatitude ice cloud particle ensembles—part II: applications for mesoscale and climate models,” Journal of the Atmospheric Sciences, vol. 60, no. 21, pp. 2592–2611, 2003. View at Google Scholar
  5. R. S. Sekhon and R. C. Srivasta, “Snow size spectra and radar reflectivity,” Journal of the Atmospheric Sciences, vol. 27, no. 2, pp. 299–307, 1970. View at Publisher · View at Google Scholar
  6. R. A. Houze Jr., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, “Size distributions of precipitation particles in frontal clouds,” Journal of the Atmospheric Sciences, vol. 36, no. 1, pp. 156–162, 1979. View at Google Scholar · View at Scopus
  7. K. K. Lo and R. E. Passarelli Jr., “The growth of snow in winter storms: an airborne observational study,” Journal of the Atmospheric Sciences, vol. 39, no. 4, pp. 697–706, 1982. View at Google Scholar · View at Scopus
  8. P. R. Field, “Aircraft observations of ice crystal evolution in an altostratus cloud,” Journal of the Atmospheric Sciences, vol. 56, no. 12, pp. 1925–1941, 1999. View at Google Scholar · View at Scopus
  9. A. J. Heymsfield, S. Lewis, A. Bansemer et al., “A general approach for deriving the properties of cirrus and stratiform ice cloud particles,” Journal of the Atmospheric Sciences, vol. 59, no. 1, pp. 3–29, 2002. View at Google Scholar · View at Scopus
  10. G. M. McFarquhar, M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, “Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes,” Monthly Weather Review, vol. 135, no. 10, pp. 3405–3428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. J. Heymsfield, A. Bansemer, P. R. Field et al., “Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: results from in situ observations in TRMM field campaigns,” Journal of the Atmospheric Sciences, vol. 59, no. 24, pp. 3457–3491, 2002. View at Google Scholar · View at Scopus
  12. P. R. Field, A. J. Heymsfield, and A. Bansemer, “Snow size distribution parameterization for midlatitude and tropical ice clouds,” Journal of the Atmospheric Sciences, vol. 64, no. 12, pp. 4346–4365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. P. Woods, M. T. Stoelinga, and J. D. Locatelli, “Size spectra of snow particles measured in wintertime precipitation in the pacific northwest,” Journal of the Atmospheric Sciences, vol. 65, no. 1, pp. 189–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Laiguang and L. Yangang, “Some microphysical characteristics of cloud and precipitation over China,” Atmospheric Research, vol. 35, no. 2–4, pp. 271–281, 1995. View at Google Scholar · View at Scopus
  15. Z. Deng, C. Zhao, Q. Zhang, M. Huang, and X. Ma, “Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area,” Atmospheric Research, vol. 93, no. 4, pp. 888–896, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Ma, X. Guo, C. Zhao, Y. Zhang, and Z. Hu, “Recent progress in cloud physics research in China,” Advances in Atmospheric Sciences, vol. 24, no. 6, pp. 1121–1137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. G. Hallar, L. M. Avallone, R. L. Herman, B. E. Anderson, and A. J. Heymsfield, “Measurements of ice water content in tropopause region Arctic cirrus during the SAGE III Ozone Loss and Validation Experiment (SOLVE),” Journal of Geophysical Research D: Atmospheres, vol. 109, no. 17, Article ID D17203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Mitchell, R. Zhang, and R. L. Pitter, “Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates,” Journal of Applied Meteorology, vol. 29, no. 2, pp. 153–163, 1990. View at Google Scholar · View at Scopus
  19. P. R. A. Brown and P. N. Francis, “Improved measurements of the ice water content in cirrus using a total-water probe,” Journal of Atmospheric and Oceanic Technology, vol. 12, no. 2, pp. 410–414, 1995. View at Publisher · View at Google Scholar
  20. A. J. Heymsfield, A. Bansemer, and C. H. Twohy, “Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds—part I: temperature dependence,” Journal of the Atmospheric Sciences, vol. 64, no. 4, pp. 1047–1067, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. P. Fleishauer, V. E. Larson, and T. H. V. Haar, “Observed microphysical structure of midlevel, mixed-phase clouds,” Journal of the Atmospheric Sciences, vol. 59, no. 11, pp. 1779–1804, 2002. View at Google Scholar · View at Scopus
  22. M. W. Gallagher, P. J. Connolly, I. Crawford et al., “Observations and modelling of microphysical variability, aggregation and sedimentation in tropical anvil cirrus outflow regions,” Atmospheric Chemistry and Physics, vol. 12, no. 14, pp. 6609–6628, 2012. View at Publisher · View at Google Scholar
  23. A. J. Heymsfield, C. G. Schmitt, A. Bansemer et al., “Effective ice particle densities for cold anvil cirrus,” Geophysical Research Letters, vol. 31, no. 2, pp. 1–5, 2004. View at Google Scholar · View at Scopus
  24. L. D. Carey, J. Niu, P. Yang, J. A. Kankiewicz, V. E. Larson, and T. H. V. Haar, “The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds,” Journal of the Atmospheric Sciences, vol. 47, no. 9, pp. 2487–2495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Noh, C. J. Seaman, T. H. V. Haar, and G. Liu, “In situ aircraft measurements of the vertical distribution of liquid and ice water content in midlatitude mixed-phase clouds,” Journal of Applied Meteorology and Climatology, vol. 52, no. 1, pp. 269–279, 2013. View at Publisher · View at Google Scholar
  26. T. Hou, H. Lei, and Z. Hu, “A comparative study of the microstructure and precipitation mechanisms for two stratiform clouds in China,” Atmospheric Research, vol. 96, no. 2-3, pp. 447–460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Guo and G. Zheng, “Advances in weather modification from 1997 to 2007 in China,” Advances in Atmospheric Sciences, vol. 26, no. 2, pp. 240–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Korolev and G. A. Isaac, “Shattering during sampling by OAPs and HVPS—part I: snow particles,” Journal of Atmospheric and Oceanic Technology, vol. 22, no. 5, pp. 528–542, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. V. Korolev, E. F. Emery, J. W. Strapp et al., “Small ice particles in tropospheric clouds: fact or artifact? Airborne icing instrumentation evaluation experiment,” Bulletin of the American Meteorological Society, vol. 92, no. 8, pp. 967–973, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. P. R. Field, A. J. Heymsfield, and A. Bansemer, “Shattering and particle interarrival times measured by optical array probes in ice clouds,” Journal of Atmospheric and Oceanic Technology, vol. 23, no. 10, pp. 1357–1371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Bouniol, J. Delanoë, C. Duroure, A. Protat, V. Giraud, and G. Penide, “Microphysical characterisation of West African MCS anvils,” Quarterly Journal of the Royal Meteorological Society, vol. 136, no. S1, pp. 323–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Y.-J. Noh, C. J. Seaman, T. H. V. Haar, D. R. Hudak, and P. Rodriguez, “Comparisons and analyses of aircraft and satellite observations for wintertime mixed-phase clouds,” Journal of Geophysical Research D: Atmospheres, vol. 116, no. 18, Article ID D18207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. D. Locatelli and P. V. Hobbs, “Fall speeds and masses of solid precipitation particles,” Journal of Geophysical Research, vol. 79, no. 15, pp. 2185–2197, 1974. View at Publisher · View at Google Scholar
  34. S. G. Cober, G. A. Isaac, A. V. Korolev, and J. W. Strapp, “Assessing cloud-phase conditions,” Journal of Applied Meteorology, vol. 40, no. 11, pp. 1967–1983, 2001. View at Google Scholar · View at Scopus
  35. S. G. Cober, G. A. Isaac, and J. W. Strapp, “Characterizations of aircraft icing environments that include supercooled large drops,” Journal of Applied Meteorology, vol. 40, no. 11, pp. 1984–2002, 2001. View at Google Scholar · View at Scopus
  36. D. Baumgardner, H. Jonsson, W. Dawson, D. O'Connor, and R. Newton, “The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations,” Atmospheric Research, vol. 59-60, pp. 251–264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. G. M. McFarquhar, J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, “Importance of small ice crystals to cirrus properties: observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE),” Geophysical Research Letters, vol. 34, no. 13, Article ID L13803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Crosier, K. N. Bower, T. W. Choularton et al., “Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus,” Atmospheric Chemistry and Physics, vol. 11, no. 1, pp. 257–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Lance, C. A. Brock, D. Rogers, and J. A. Gordon, “Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC,” Atmospheric Measurement Techniques, vol. 3, no. 6, pp. 1683–1706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. R. P. Lawson, B. A. Baker, C. G. Schmitt, and T. L. Jensen, “An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE,” Journal of Geophysical Research D: Atmospheres, vol. 106, no. 14, pp. 14989–15014, 2001. View at Google Scholar · View at Scopus
  41. A. Korolev, G. A. Isaac, and J. Hallett, “Ice particle habits in stratiform clouds,” Quarterly Journal of the Royal Meteorological Society, vol. 126, no. 569, pp. 2873–2902, 2000. View at Google Scholar · View at Scopus
  42. A. J. Heymsfield and L. J. Donner, “A scheme for parameterizing ice-cloud water content in general circulation models,” Journal of the Atmospheric Sciences, vol. 47, no. 15, pp. 1865–1877, 1990. View at Google Scholar · View at Scopus
  43. A. J. Heymsfield and G. M. McFarquhar, “High albedos of cirrus in the tropical pacific warm pool: microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands,” Journal of the Atmospheric Sciences, vol. 53, no. 17, pp. 2424–2451, 1996. View at Google Scholar · View at Scopus
  44. P. V. Hobbs and A. L. Rangno, “Ice particle concentrations in clouds,” Journal of the Atmospheric Sciences, vol. 42, no. 3, pp. 2523–2549, 1985. View at Google Scholar · View at Scopus
  45. B. F. Ryan, “On the global variation of precipitating layer clouds,” Bulletin of the American Meteorological Society, vol. 77, no. 1, pp. 53–70, 1996. View at Google Scholar · View at Scopus