Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014, Article ID 237247, 11 pages
http://dx.doi.org/10.1155/2014/237247
Research Article

A Hidden Markov Model Applied to the Daily Spring Precipitation over the Danube Basin

1National Institute of Hydrology and Water Management, 013686 Bucharest, Romania
2Hessian Centre on Climate Change, 65203 Wiesbaden, Germany
3University of Agronomic Sciences and Veterinary Medicine, 011464 Bucharest, Romania
4Institute of Meteorology, Free University Berlin, 12165 Berlin, Germany

Received 12 August 2013; Revised 20 November 2013; Accepted 26 December 2013; Published 19 February 2014

Academic Editor: Klaus Dethloff

Copyright © 2014 Constantin Mares et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. E. Baum and T. Petrie, “Statistical inference for probabilities functions of finite state Markov chain,” Annals of Mathematical Statistics, vol. 37, pp. 1553–1563, 1966. View at Google Scholar
  2. L. R. Rabiner, “Tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. Hughes and P. Guttorp, “Incorporating spatial dependence and atmospheric data in a model of precipitation,” Journal of Applied Meteorology, vol. 33, pp. 1503–1515, 1994. View at Google Scholar
  4. J. P. Hughes, P. Guttorp, and S. P. Charles, “A non-homogeneous hidden Markov model for precipitation occurrence,” Journal of the Royal Statistical Society C, vol. 48, no. 1, pp. 15–30, 1999. View at Google Scholar · View at Scopus
  5. A. M. Greene, A. W. Robertson, and S. Kirshner, “Analysis of Indian monsoon daily rainfall on subseasonal to multidecadal time-scales using a hidden Markov model,” Quarterly Journal of the Royal Meteorological Society, vol. 134, no. 633, pp. 875–887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Maraun, F. Wetterhall, A. M. Ireson et al., “Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user,” Reviews of Geophysics, vol. 48, no. 3, 2010. View at Publisher · View at Google Scholar
  7. A. H. Monahan, J. C. Fyfe, M. H. P. Ambaum, D. B. Stephenson, and G. R. North, “Empirical orthogonal functions: the medium is the message,” Journal of Climate, vol. 22, no. 24, pp. 6501–6514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kravtsov and S. K. Gulev, “Kinematics of Eddy—mean flow interaction in an idealized atmospheric model,” Journal of the Atmospheric Sciences, vol. 70, no. 8, pp. 2574–2595, 2013. View at Publisher · View at Google Scholar
  9. M. Ghil and A. W. Robertson, “‘Waves’ vs. “particles” in the atmosphere's phase space: a pathway to long-range forecasting?” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 2493–2500, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Bellone, J. P. Hughes, and P. Guttorp, “A hidden Markov model for downscalling synoptic atmospheric patterns to precipitation amounts,” Climate Research, vol. 15, no. 1, pp. 1–12, 2000. View at Google Scholar · View at Scopus
  11. S. P. Charles, B. C. Bates, and J. P. Hughes, “A spatiotemporal model for downscaling precipitation occurrence and amounts,” Journal of Geophysical Research D, vol. 104, no. 24, pp. 31657–31669, 1999. View at Google Scholar · View at Scopus
  12. X. Zheng and R. W. Katz, “Mixture model of generalized chain-dependent processes and its application to simulation of interannual variability of daily rainfall,” Journal of Hydrology, vol. 349, no. 1-2, pp. 191–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Huebener, I. Mares, C. Mares, U. Cubasch, and P. Stanciu, “Estimating Romanian rainfall contribution to lower Danube discharge,” Geophysical Research Abstracts, vol. 9, Article ID 08910, 2007. View at Google Scholar
  14. U. Cubasch, H. Von Storch, J. Waszkewitz, and E. Zorita, “Estimates of climate change in Southern Europe derived from dynamical climate model output,” Climate Research, vol. 7, no. 2, pp. 129–149, 1996. View at Google Scholar · View at Scopus
  15. J. J. Beersma, Extreme hydro—meteorological events and their probabilities [M.S. thesis], Wageningen Universiteit, Wageningen, The Netherlands, 2007.
  16. J. J. Beersma and T. A. Buishand, “Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation,” Climate Research, vol. 25, no. 2, pp. 121–133, 2003. View at Google Scholar · View at Scopus
  17. C. Franzke, D. Crommelin, A. Fischer, and A. J. Majda, “A hidden Markov model perspective on regimes and metastability in atmospheric flows,” Journal of Climate, vol. 21, no. 8, pp. 1740–1757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Mares, C. Mares, and P. Stanciu, “A hidden Markov model for the Orsova discharge level in springtime,” in Proceedings of the International Conference on Water Observation and Information System for Decision Support, Ohrid, Republic of Macedonia, 2008, http://balwois.com/balwois/administration/full_paper/ffp-940.pdf.
  19. P. Pekárová, P. Miklánek, and J. Pekár, “Long-term Danube monthly discharge prognosis for the Bratislava station using stochastic models,” Meteorologický Časopis, vol. 10, pp. 211–218, 2007. View at Google Scholar
  20. A. W. Robertson, S. Kirshner, and P. Smyth, “Downscaling of daily rainfall occurrence over Northeast Brazil using a hidden Markov model,” Journal of Climate, vol. 17, no. 22, pp. 4407–4424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. W. Robertson, S. Kirshner, P. Smyth, S. P. Charles, and B. C. Bates, “Subseasonal-to-interdecadal variability of the Australian monsoon over North Queensland,” Quarterly Journal of the Royal Meteorological Society, vol. 132, no. 615, pp. 519–542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Kirshner, Modeling of multivariate time series using hidden Markov models [Ph.D. thesis], University of California, Irvine, Calif, USA, 2005.
  23. S. Kirshner, A. W. Robertson, and P. J. Smyth, “Conditional Chow-Liu tree structures for modeling discrete-valued vector time series,” Tech. Rep. ICS-TR 04-04, Information and Computer Science, University of California, Irvine, Calif, USA, 2004. View at Google Scholar
  24. A. M. G. Klein Tank, J. B. Wijngaard, G. P. Können et al., “Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment,” International Journal of Climatology, vol. 22, no. 12, pp. 1441–1453, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. M. Uppala et al., “The ERA-40 Re-Analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 2961–3012, 2005. View at Publisher · View at Google Scholar
  26. H. von Storch and F. Zwiers, Statistical Analysis in Climate Research, Cambridge University Press, Cambridge, UK, 1999.
  27. H. Huebener and M. Kerschgens, “Downscaling of current and future rainfall climatologies for southern Morocco. Part I. Downscaling method and current climatology,” International Journal of Climatology, vol. 27, no. 13, pp. 1763–1774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Iosifescu and S. Grigorescu, Dependence with Complete Connections and Its Applications, Cambridge University Press, Cambridge, UK, 1990.