Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014, Article ID 319819, 14 pages
http://dx.doi.org/10.1155/2014/319819
Research Article

WRF Model Methodology for Offshore Wind Energy Applications

EDF Energy R&D UK Centre, 52 Grosvenor Gardens, London SW1W 0AU, UK

Received 6 February 2014; Accepted 24 March 2014; Published 23 April 2014

Academic Editor: Huei-Ping Huang

Copyright © 2014 Evangelia-Maria Giannakopoulou and Regis Nhili. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Among the parameters that must be considered for an offshore wind farm development, the stability conditions of the marine atmospheric boundary layer (MABL) are of significant importance. Atmospheric stability is a vital parameter in wind resource assessment (WRA) due to its direct relation to wind and turbulence profiles. A better understanding of the stability conditions occurring offshore and of the interaction between MABL and wind turbines is needed. Accurate simulations of the offshore wind and stability conditions using mesoscale modelling techniques can lead to a more precise WRA. However, the use of any mesoscale model for wind energy applications requires a proper validation process to understand the accuracy and limitations of the model. For this validation process, the weather research and forecasting (WRF) model has been applied over the North Sea during March 2005. The sensitivity of the WRF model performance to the use of different horizontal resolutions, input datasets, PBL parameterisations, and nesting options was examined. Comparison of the model results with other modelling studies and with high quality observations recorded at the offshore measurement platform FINO1 showed that the ERA-Interim reanalysis data in combination with the 2.5-level MYNN PBL scheme satisfactorily simulate the MABL over the North Sea.