Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014, Article ID 414015, 19 pages
http://dx.doi.org/10.1155/2014/414015
Research Article

Meteorological and Back Trajectory Modeling for the Rocky Mountain Atmospheric Nitrogen and Sulfur Study II

1Air Resources Division, National Park Service, Fort Collins, CO 80523, USA
2Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523, USA
3AECOM, Inc., Fort Collins, CO 80525, USA
4Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA

Received 17 January 2014; Accepted 28 March 2014; Published 8 May 2014

Academic Editor: Florinda Artuso

Copyright © 2014 Kristi A. Gebhart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. M. Lewis Jr., M. C. Grant, and J. F. Saunders III, “Chemical patterns of bulk atmospheric deposition in the state of Colorado,” Water Resources Research, vol. 20, no. 11, pp. 1691–1704, 1984. View at Google Scholar · View at Scopus
  2. K. B. Benedict, S. M. Kreidenweis, B. A. Schichtel, W. C. Malm, and J. L. Collett Jr., “A seasonal nitrogen deposition budget for Rocky Mountain National Park,” Ecological Applications, vol. 23, no. 5, pp. 1156–1169, 2013. View at Publisher · View at Google Scholar
  3. K. B. Benedict, D. E. Day, F. M. Schwandner et al., “Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across Colorado,” Atmospheric Environment, vol. 64, pp. 66–76, 2013. View at Publisher · View at Google Scholar
  4. D. A. Burns, “Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming—a review and new analysis of past study results,” Atmospheric Environment, vol. 37, no. 7, pp. 921–932, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. B. Lehmann, V. C. Bowersox, and S. M. Larson, “Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002,” Environmental Pollution, vol. 135, no. 3, pp. 347–361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. H. Campbell, C. Kendall, C. C. Y. Chang, S. R. Silva, and K. A. Tonnessen, “Pathways for nitrate release from an alpine watershed: Determination using delta N-15 and delto O-18,” Water Resources Research, vol. 38, no. 5, pp. 10-1–10-9, 2002. View at Publisher · View at Google Scholar
  7. J. S. Baron, T. M. Schmidt, and M. D. Hartman, “Climate-induced changes in high elevation stream nitrate dynamics,” Global Change Biology, vol. 15, no. 7, pp. 1777–1789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Baron, H. M. Rueth, A. M. Wolfe et al., “Ecosystem responses to nitrogen deposition in the Colorado Front Range,” Ecosystems, vol. 3, no. 4, pp. 352–368, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M. E. Fenn, J. S. Baron, E. B. Allen et al., “Ecological effects of nitrogen deposition in the western United States,” BioScience, vol. 53, no. 4, pp. 404–420, 2003. View at Google Scholar · View at Scopus
  10. M. E. Fenn, R. Haeuber, G. S. Tonnesen et al., “Nitrogen emissions, deposition, and monitoring in the western United States,” BioScience, vol. 53, no. 4, pp. 391–403, 2003. View at Google Scholar · View at Scopus
  11. M. A. Rodriguez, M. G. Barna, K. A. Gebhart et al., “Modeling the fate of atmospheric reduced nitrogen during the Rocky mountain atmospheric nitrogen and sulfur study (RoMANS): performance evaluation and diagnosis using integrated process analysis,” Atmospheric Environment, vol. 45, no. 1, pp. 223–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. D. D. Parrish, “Systematic variations in the concentration of NOx (NO plus NO2) at Niwot Ridge, Colorado,” Journal of Geophysical Research, vol. 95, no. 2, pp. 1817–1836, 1990. View at Google Scholar · View at Scopus
  13. J. Baron and A. S. Denning, “The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, U.S.A,” Atmospheric Environment A General Topics, vol. 27, no. 15, pp. 2337–2349, 1993. View at Google Scholar · View at Scopus
  14. M. Losleben, N. Pepin, and S. Pedrick, “Relationships of precipitation chemistry, atmospheric circulation, and elevation at two sites on the Colorado front range,” Atmospheric Environment, vol. 34, no. 11, pp. 1723–1737, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. W. C. Malm, J. L. Collett Jr., M. G. Barna et al., Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) Final Report, 2009, http://nature.nps.gov/air/Pubs/regionPark.cfm.
  16. K. A. Gebhart, B. A. Schichtel, W. C. Malm, M. G. Barna, M. A. Rodriguez, and J. L. Collett, “Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA,” Atmospheric Environment, vol. 45, no. 3, pp. 621–633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. W. C. Malm, B. A. Schichtel, M. G. Barna et al., “Aerosol species concentrations and source apportionment of ammonia at Rocky Mountain National Park,” Journal of the Air & Waste Management Association, vol. 63, no. 11, pp. 1245–1263, 2013. View at Google Scholar
  18. K. B. Beem, S. Raja, F. M. Schwandner et al., “Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study,” Environmental Pollution, vol. 158, no. 3, pp. 862–872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N. J. Doesken, R. A. Pielke Sr., and O. A. P. Bliss, Climate of Colorado, Climatography of the United States No. 60, Colorado Climate Center, Atmospheric Science Department, Colorado State University, Fort Collins, Colorado, 2003.
  20. E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” Journal of Geophysical Research D: Atmospheres, vol. 102, no. 14, pp. 16663–16682, 1997. View at Google Scholar · View at Scopus
  21. M. D. Chou, “Parameterizations for the absorption of solar radiation by O2 and CO2 with application to climate studies,” Journal of Climate, vol. 3, pp. 209–217, 1990. View at Google Scholar
  22. M. D. Chou, “A solar radiation model for use in climate studies,” Journal of the Atmospheric Sciences, vol. 49, no. 9, pp. 762–772, 1992. View at Google Scholar · View at Scopus
  23. A. S. Monin and A. M. Obukhov, “Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground),” Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, vol. 24, no. 151, pp. 163–187, 1954. View at Google Scholar
  24. T. Foken, “50 years of the Monin-Obukhov similarity theory,” Boundary-Layer Meteorology, vol. 119, no. 3, pp. 431–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. B. Ek, K. E. Mitchell, Y. Lin et al., “Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model,” Journal of Geophysical Research D: Atmospheres, vol. 108, no. 22, pp. 1–16, 2003. View at Google Scholar · View at Scopus
  26. S.-Y. Hong, Y. Noh, and J. Dudhia, “A new vertical diffusion package with an explicit treatment of entrainment processes,” Monthly Weather Review, vol. 134, no. 9, pp. 2318–2341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-Y. Hong and S.-W. Kim, “Stable boundary layer mixing in a vertical diffusion scheme,” in Proceedings of the 9th Annual WRF User's Workshop, National Center for Atmospheric Research, 2008.
  28. X.-M. Hu, J. W. Nielsen-Gammon, and F. Zhang, “Evaluation of three planetary boundary layer schemes in the WRF model,” Journal of Applied Meteorology and Climatology, vol. 49, no. 9, pp. 1831–1844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S.-Y. Hong, J. Dudhia, and S.-H. Chen, “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation,” Monthly Weather Review, vol. 132, no. 1, pp. 103–120, 2004. View at Google Scholar · View at Scopus
  30. J. S. Kain and J. M. Fritsch, “Convective parameterization for mesoscale models: the Kain-Fritch scheme,” in The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., American Meteorological Society, 1993. View at Google Scholar
  31. J. S. Kain and J. Kain, “The Kain—Fritsch convective parameterization: an update,” Journal of Applied Meteorology, vol. 43, no. 1, pp. 170–181, 2004. View at Google Scholar · View at Scopus
  32. Z. Adelman and M. Omary, Emissions Modeling Final Report—Developing 2009 Emissions For the NPS-ARD RoMANS Study, Chapel Hill: Institute for the Environment, University of North Carolina.
  33. W. D. Neff, “The Denver brown cloud studies from the perspective of model assessment needs and the role of meteorology,” Journal of the Air and Waste Management Association, vol. 47, no. 3, pp. 269–285, 1997. View at Google Scholar · View at Scopus
  34. H. Sievering, D. Rusch, and L. Marquez, “Nitric acid, particulate nitrate and ammonium in the continental free troposphere: nitrogen deposition to an alpine tundra ecosystem,” Atmospheric Environment, vol. 30, no. 14, pp. 2527–2537, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Heuer, K. A. Tonnessen, and G. P. Ingersoll, “Comparison of precipitation chemistry in the Central Rocky Mountains, Colorado, USA,” Atmospheric Environment, vol. 34, no. 11, pp. 1713–1722, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. G. P. Ingersoll, K. A. Tonnessen, D. H. Campbell, B. R. Glass, and A. O. Torizzo, “Effect of storm trajectories on snowfall chemistry in Rocky Mountain National Park, Colorado,” in Proceedings of the 69th Annual Meeting Western Snow Conference, pp. 32–42, April 2001. View at Scopus
  37. H. Sievering, T. Kelly, G. McConville, C. Seibold, and A. Turnipseed, “Nitric acid dry deposition to conifer forests: niwot Ridge spruce-fir-pine study,” Atmospheric Environment, vol. 35, no. 22, pp. 3851–3859, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. D. E. Day, X. Chen, K. A. Gebhart et al., “Spatial and temporal variability of ammonia and other inorganic aerosol species,” Atmospheric Environment, vol. 61, pp. 490–498, 2012. View at Publisher · View at Google Scholar
  39. The Weather Research and Forecasting Model, 2012, http://wrf-model.org/index.php.
  40. W. C. Skamarock, J. B. Klemp, J. Dudhia et al., A Description of the Advanced Research WRF Version 3, 2008, NCAR Technical Note NCAR/TN-475+STR.
  41. F. Mesinger, G. DiMego, E. Kalnay et al., “North American regional reanalysis,” Bulletin of the American Meteorological Society, vol. 87, no. 3, pp. 343–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. North American Regional Reanalysis home page, 2009, http://wwwt.emc.ncep.noaa.gov/mmb/rreanl/index.html.
  43. B. A. Colle, C. F. Mass, and K. J. Westrick, “MM5 precipitation verification over the Pacific Northwest during the 1997-99 cool seasons,” Weather and Forecasting, vol. 15, no. 6, pp. 730–744, 2000. View at Google Scholar · View at Scopus
  44. UCAR, NCEP ADP Global Surface Observational Weather Data, October 1999, continuing, http://rda.ucar.edu/datasets/ds461.
  45. UCAR, NCEP ADP Global Upper Air Observational Weather Data, October 1999, continuing, http://rda.ucar.edu/datasets/ds351.0/.
  46. “National Oceanic and Atmospheric Administration (NOAA_,” Meteorological Assimilation Data Ingest System (MADIS), 2010, http://madis.noaa.gov/.
  47. T.-K. Wee, Y.-H. Kuo, D.-K. Lee, Z. Liu, and W. Wang, “Two overlooked biases of the Advanced Research WRF (ARW) model in geopotential height and temperature,” Monthly Weather Review, vol. 140, no. 12, pp. 3907–3918, 2012. View at Publisher · View at Google Scholar
  48. D. C. Carslaw and K. Ropkins, “Openair—an r package for air quality data analysis,” Environmental Modelling and Software, vol. 27-28, pp. 52–61, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. R Development Core Team, A Language and Environment For Statistical Computing, R Foundation For Statistical Computing, Vienna, Austria, 2011, http://www.R-project.org.
  50. R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition,” Australian Meteorological Magazine, vol. 47, no. 4, pp. 295–308, 1998. View at Google Scholar · View at Scopus
  51. Z. I. Janjic, “A nonhydrostatic model based on a new approach,” Meteorology and Atmospheric Physics, vol. 82, no. 1–4, pp. 271–285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. National Weather Service Environmental Modeling Center, North American Mesoscale Forecast System (NAM), 2012, http://www.emc.ncep.noaa.gov/NAM/.php.
  53. M. Pitchford and A. Pitchford, “Analysis of regional visibility in the southwest using principal component and back trajectory techniques,” Atmospheric Environment A General Topics, vol. 19, no. 8, pp. 1301–1316, 1985. View at Publisher · View at Google Scholar · View at Scopus
  54. K. A. Gebhart, B. A. Schichtel, M. G. Barna, and W. C. Malm, “Quantitative back-trajectory apportionment of sources of particulate sulfate at Big Bend National Park, TX,” Atmospheric Environment, vol. 40, no. 16, pp. 2823–2834, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. R. D. Saylor, E. S. Edgerton, B. E. Hartsell, K. Baumann, and D. A. Hansen, “Continuous gaseous and total ammonia measurements from the southeastern aerosol research and characterization (SEARCH) study,” Atmospheric Environment, vol. 44, no. 38, pp. 4994–5004, 2010. View at Publisher · View at Google Scholar · View at Scopus