Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014 (2014), Article ID 474876, 10 pages
http://dx.doi.org/10.1155/2014/474876
Research Article

Comparison of Satellite and Ground-Based Phenology in China’s Temperate Monsoon Area

1Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, A 11 Datun Road, Chaoyang District, Beijing 100101, China
2University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

Received 12 February 2014; Revised 20 March 2014; Accepted 20 March 2014; Published 24 April 2014

Academic Editor: Dong Jiang

Copyright © 2014 Huanjiong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. D. Schwartz, Phenology: An Integrative Environmental Science, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
  2. G.-R. Walther, E. Post, P. Convey et al., “Ecological responses to recent climate change,” Nature, vol. 416, no. 6879, pp. 389–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Rosenzweig, G. Casassa, D. J. Karoly et al., “Assessment of observed changes and responses in natural and managed systems,” in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, Eds., pp. 79–131, Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  4. E. E. Cleland, I. Chuine, A. Menzel, H. A. Mooney, and M. D. Schwartz, “Shifting plant phenology in response to global change,” Trends in Ecology and Evolution, vol. 22, no. 7, pp. 357–365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Stckli, T. Rutishauser, I. Baker, M. A. Liniger, and A. S. Denning, “A global reanalysis of vegetation phenology,” Journal of Geophysical Research G: Biogeosciences, vol. 116, no. 3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. F. W. Badeck, A. Bondeau, K. Böttcher et al., “Responses of spring phenology to climate change,” New Phytologist, vol. 162, no. 2, pp. 295–309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. T. H. Sparks and A. Menzel, “Observed changes in seasons: an overview,” International Journal of Climatology, vol. 22, no. 14, pp. 1715–1725, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Ge, H. Wang, and J. Dai, “Shifts in spring phenophases, frost events and frost risk for woody plants in temperate China,” Climate Research, vol. 57, no. 3, 2013. View at Google Scholar
  9. J. T. Morisette, A. D. Richardson, A. K. Knapp et al., “Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century,” Frontiers in Ecology and the Environment, vol. 7, no. 5, pp. 253–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Barr, T. A. Black, and H. McCaughey, “Climatic and phenological controls of the carbon and energy balances of three contrasting boreal forest ecosystems in western Canada,” in Phenology of Ecosystem Processes, A. Noormets, Ed., pp. 3–34, Springer, New York, NY, USA, 2009. View at Google Scholar
  11. M. D. Schwartz and J. M. Hanes, “Intercomparing multiple measures of the onset of spring in eastern North America,” International Journal of Climatology, vol. 30, no. 11, pp. 1614–1626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Piao, P. Friedlingstein, P. Ciais, N. Viovy, and J. Demarty, “Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades,” Global Biogeochemical Cycles, vol. 21, no. 3, p. B3018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. Schwartz and B. C. Reed, “Surface phenology and satellite sensor-derived onset of greenness: an initial comparison,” International Journal of Remote Sensing, vol. 20, no. 17, pp. 3451–3457, 1999. View at Google Scholar · View at Scopus
  14. M. D. Schwartz, B. C. Reed, and M. A. White, “Assesing satellite-derived start-of-season measures in the conterminous USA,” International Journal of Climatology, vol. 22, no. 14, pp. 1793–1805, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Cong, S. Piao, A. Chen et al., “Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis,” Agricultural and Forest Meteorology, vol. 165, pp. 104–113, 2012. View at Google Scholar
  16. T. Ma and C. Zhou, “Climate-associated changes in spring plant phenology in China,” International Journal of Biometeorology, vol. 56, no. 2, pp. 269–275, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Piao, J. Fang, L. Zhou, P. Ciais, and B. Zhu, “Variations in satellite-derived phenology in China's temperate vegetation,” Global Change Biology, vol. 12, no. 4, pp. 672–685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. White, K. M. de Beurs, K. Didan et al., “Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006,” Global Change Biology, vol. 15, no. 10, pp. 2335–2359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Studer, R. Stöckli, C. Appenzeller, and P. L. Vidale, “A comparative study of satellite and ground-based phenology,” International Journal of Biometeorology, vol. 51, no. 5, pp. 405–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Editorial Board of the Vegetation Map of China, Vegetation Map of the People's Republic of China (1:10000000), Geological Publishing House, Beijing, China, 2007.
  21. M. W. Wan and X. Z. Liu, China's National Phenological observational Criterion, Science Press, Beijing, China, 1979.
  22. C. J. Tucker, J. E. Pinzon, M. E. Brown et al., “An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data,” International Journal of Remote Sensing, vol. 26, no. 20, pp. 4485–4498, 2005. View at Google Scholar
  23. L. Zhou, R. K. Kaufmann, Y. Tian, R. B. Myneni, and C. J. Tucker, “Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999,” Journal of Geophysical Research D: Atmospheres, vol. 108, no. 1, p. 4004, 2003. View at Google Scholar · View at Scopus
  24. X. Zhang, M. A. Friedl, C. B. Schaaf et al., “Monitoring vegetation phenology using MODIS,” Remote Sensing of Environment, vol. 84, no. 3, pp. 471–475, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. G. J. Roerink, M. Menenti, and W. Verhoef, “Reconstructing cloudfree NDVI composites using Fourier analysis of time series,” International Journal of Remote Sensing, vol. 21, no. 9, pp. 1911–1917, 2000. View at Google Scholar · View at Scopus
  26. M. A. White, P. E. Thornton, and S. W. Running, “A continental phenology model for monitoring vegetation responses to interannual climatic variability,” Global Biogeochemical Cycles, vol. 11, no. 2, pp. 217–234, 1997. View at Google Scholar · View at Scopus
  27. M. A. White, R. R. Nemani, P. E. Thornton, and S. W. Running, “Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest,” Ecosystems, vol. 5, no. 3, pp. 260–273, 2002. View at Google Scholar · View at Scopus
  28. P. Jönsson and L. Eklundh, “Seasonality extraction by function fitting to time-series of satellite sensor data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 8, pp. 1824–1832, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Chen, P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh, “A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter,” Remote Sensing of Environment, vol. 91, no. 3-4, pp. 332–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Lee, F. Yu, K. P. Price, J. Ellis, and P. Shi, “Evaluating vegetation phenological patterns in Inner Mongolia using NDVI time-series analysis,” International Journal of Remote Sensing, vol. 23, no. 12, pp. 2505–2512, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. W. J. D. van Leeuwen, “Monitoring the effects of forest restoration treatments on post-fire vegetation recovery with MODIS multitemporal data,” Sensors, vol. 8, no. 3, pp. 2017–2042, 2008. View at Google Scholar · View at Scopus
  32. J. I. Fisher, J. F. Mustard, and M. A. Vadeboncoeur, “Green leaf phenology at Landsat resolution: scaling from the field to the satellite,” Remote Sensing of Environment, vol. 100, no. 2, pp. 265–279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. G. J. Roerink, M. Menenti, W. Soepboer, and Z. Su, “Assessment of climate impact on vegetation dynamics by using remote sensing,” Physics and Chemistry of the Earth, vol. 28, no. 1–3, pp. 103–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. The R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014.
  35. T. Rutishauser, J. Luterbacher, F. Jeanneret, C. Pfister, and H. Wanner, “A phenology-based reconstruction of interannual changes in past spring seasons,” Journal of Geophysical Research G: Biogeosciences, vol. 112, no. 4, p. 4016, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Ge, J. Dai, J. Zheng et al., “Advances in first bloom dates and increased occurrences of yearly second blooms in eastern China since the 1960s: further phenological evidence of climate warming,” Ecological Research, vol. 26, no. 4, pp. 713–723, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Wang, J. Dai, and Q. Ge, “The spatiotemporal characteristics of spring phenophase changes of Fraxinus chinensis in China from 1952 to 2007,” Science China Earth Sciences, vol. 55, no. 6, pp. 991–1000, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Cong, T. Wang, H. Nan et al., “Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis,” Global Change Biology, vol. 19, no. 3, pp. 881–891, 2013. View at Google Scholar
  39. L. Liang, M. D. Schwartz, and S. Fei, “Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest,” Remote Sensing of Environment, vol. 115, no. 1, pp. 143–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. D. Richardson, J. P. Jenkins, B. H. Braswell, D. Y. Hollinger, S. V. Ollinger, and M.-L. Smith, “Use of digital webcam images to track spring green-up in a deciduous broadleaf forest,” Oecologia, vol. 152, no. 2, pp. 323–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Ide and H. Oguma, “Use of digital cameras for phenological observations,” Ecological Informatics, vol. 5, no. 5, pp. 339–347, 2010. View at Publisher · View at Google Scholar · View at Scopus