Advances in Meteorology

Advances in Meteorology / 2016 / Article
Special Issue

Monitoring and Modeling Terrestrial Ecosystems’ Response to Climate Change 2016

View this Special Issue

Research Article | Open Access

Volume 2016 |Article ID 9783646 | 11 pages | https://doi.org/10.1155/2016/9783646

Climate Change and Fruit-Picking Tourism: Impact and Adaptation

Academic Editor: Herminia García Mozo
Received17 Mar 2016
Accepted03 Oct 2016
Published24 Oct 2016

Abstract

The purpose of this work is to present phenology as a valid indicator and methodology for monitoring and assessing the impact of climate change on plant-based tourist activities. Fruit-picking has become a popular rural tourism activity worldwide. However, fruit maturity dates (FMD) have been affected by climate change (CC), which has in turn profoundly affected fruit-picking tourism activities (FPTA). In this paper, phenological data on the FMD for 45 types of plants in 1980–2012, dates for more than 200 fruit-picking festivals, and data on monthly average air temperature in 1980–2013 were used to assess the impact of CC on FPTA by wavelet and correlation analyses. The findings indicated that the study area had been significantly affected by CC. Prevailing temperatures at one or three months prior have a decisive influence on FMD. Among the 11 plants directly related to FPTA, the FMD of four were significantly advanced, while 6-7 were significantly delayed owning to increased temperature. Of the 11 FPTA, only two had realized the impact of CC and had adjusted festival opening dates based on dynamic changes. However, a considerable number of festival activities remained fixed or scheduled on the weekends.

1. Introduction

The phenophases of plants (such as flowering and changes in leaf coloration) have important ecological and economic significance. In the past, people would celebrate seasons when plants blossom and bear fruits by holding festivals and carrying out related events and activities. These forms of leisure and tourism activities have always been very popular. Examples include the cherry blossom festivals held in Japan and the United States (US), tulip festival in Netherlands, and narcissus festival in Austria. Nowadays, viewing the flowering and leaf coloration changes of ornamental plants and fruit-picking have become attractive tourism activities. These aspects of the agritourism industry are valued at trillions of dollars. Every spring, the National Cherry Blossom Festival in Washington attracts 700,000 visitors [1], while daily visitors viewing the cherry blossoms in Ueno Park of Tokyo, Japan, amount to hundreds of thousands. Likewise, the National Cherry Festival held from November to December in the town of Young in New South Wales, Australia, every year attracts thousands of visitors. In China, viewing peach blossoms is a tradition that has lasted more than a thousand years. Each year, the Peach Blossom Festival held in Longquanyi District, Chengdu, attracts more than four million visitors.

In recent years, an important activity of rural tourism in China is fruit-picking during seasons when fruits ripen. During these periods, previous bases for fruit cultivation have now become important places for fruit-picking. It is also a popular recreation and tourism activity worldwide for individuals to pick fruits from fruit-producing bases personally and then savoring them fresh. Such activities in China attract the participation of large numbers of tourists. These include the annual loquat harvesting festival in spring, watermelon, and grape picking festivals in summer and citrus festival in fall. Tourism revenue derived from fruit-picking activities has gradually become an important component of local farmers’ incomes.

The Strawberry Festival of Tongzhou District, Beijing, was officially opened on March 22, 2013. The event brought more than 20,000 visitors to the district and its surrounding towns and villages daily, generating daily incomes that amounted to 1.3 million renminbi (RMB). The first Grape Festival of Daxing District, Beijing, held in 2015 welcomed thousands of tourists on the opening day. In the fall of 2014, Beiwu Town, located in the Shunyi District of Beijing, promoted fruit-picking tours within an integrated green and ecological zone occupying 3,000 mu (Chinese acre), attracting large numbers of tourists.

The Shanghai Citrus Festival is organized on Changxing Island and draws more than 100,000 tourists annually. That number comprises half of the island’s total tourist arrivals per year. The mulberry-producing base in Chongming County, Shanghai, which hosts the annual fruit-picking of mulberry festival, has a cultivated area of 7,148 mu, annual output capacity up to 8,500 tons, and annual output value amounting to one hundred million RMB. The 2015 Grape Cultural Festival of Pancheng New Street, Nanjing, lasted half a month and received more than 130,000 visitors. The cumulative weight of grapes sold was 8.75 million kilograms, translating to sales revenue of 109 million RMB. The Lvshun Cherry Festival welcomed 220,000 visitors in 2011, reaping nine million RMB in ticket sales. In addition, 20,000 tons of sweet cherries were sold, generating total revenue of 280 million RMB.

Phenological studies indicate that plants are more sensitive to temperatures during the phenophases (flowering and fruiting dates) [24]. There is already existing literature [5] that made use of phenological observation data on the flowering and leaf coloration changes of plants to examine the impact of climate change (CC) on plants’ phenophases and related tourism activities, such as viewing floral blossoms in spring [68] and red foliage of trees in fall [9]. Aono and Kazui [10] pointed out that the average full flowering date of Kyoto’s cherry blossoms in 1971–2000 had been advanced by seven days compared to 1,200 years ago. As an adaptation strategy to CC and the induced effect of the flowering date being advanced, Japan set up a dedicated website which was set up in Japan to provide visitors with accurate forecasts for the durations of and locations for viewing cherry blossoms. On the other hand, existing literature does not contain studies in which phenological data on fruit maturation are used to study possible impacts of CC on fruit-picking tourism activities (FPTA), nor have any adaptive measures been made.

In this context, this paper used phenological observation data on fruit maturation and defined characteristics of CC within the study area as the basis to analyze the sensitivity of maturity dates to air temperature. In so doing, the aim was to determine the types of plants whose FMD are being affected by CC. Next, the relationship between air temperature and the various fruit-picking festivals’ opening date was analyzed. We also examined whether FMD and fruit-picking festivals were aligned with trends in temperature fluctuations.

These findings were used as the basis to determine the possible impact that CC has on fruit-picking tourism, as well as to propose strategies that can help related operators adapt to CC. The study subject was fruit-picking festival, while Chongqing Municipality was selected as the study area because there is a wide variety of FPTA held there. This meant that the impact will be felt there greater and that the comprehensive tourism effect will be more prominently. We hope that the study will alert researchers to the economic significance of phenology.

These findings can provide a preliminary insight into the adaptability of tourism activities to CC and serve as an important scientific basis to understand the temporal and regional variations in seasonal plant-related tourism activities. Furthermore, they can also guide the adaptation of tourism activities to CC and improve the accuracy and risk estimates of the economic impact that CC has on the tourism industry, and help tourism policy makers formulate strategies that will help tourism activities adapt to CC.

2. Study Area

Chongqing, the largest city in southwest China, is located between longitude 105°17′–110°11′ east and latitude 28°10′–32°13′ north. It is an important tourism center along the upper reaches of the Yangtze River (Figure 1). In 2014, it hosted a total of 349 million tourists and tourism revenue was more than 200 billion RMB. Among that, rural tourism comprised 80 million visitors and business income of 15 billion RMB. The industry generated related jobs for more than 600,000 people and helped 180,000 farmers out of poverty.

The scale of FPTA in Chongqing has enlarged in recent years and its development has reached a more mature stage. Consequently, the comprehensive benefits of 11 FPTA have become more significant. Such activities have gradually become an important source of rural tourism revenue, with related tourism incomes having exceeded one billion RMB since 2013. At the 2010 Grape Tourism and Culture Festival of Bishan District, there were 120,000 visitors on the opening day alone and the tourism revenue reached 5.2 million RMB. For the Loquat Tourism Cultural Festival of Dazu District, visitor arrivals for both 2012 and 2013 exceeded 300,000 per year.

3. Materials and Methods

3.1. Data Sources
3.1.1. Data on FMD

Data on FMD for 45 plant species at Chongqing’s Beibei Station for the two time periods of 1980–1996 and 2003–2012 were obtained from the Chinese Phenological Observation Network (CPON). The network was established upon the advocation of Mr. Zhu Kezhen and now it has more than 30 stations. It has the largest number of field observation stations within China, most abundant observed species, and uninterrupted plant phenophase data over the longest period (Table 1).


NumberSpeciesFamilyNFMD

B1Michelia alba DC. (white Michelia flower)Michelia58/24
B2Cupressus funebris (Kashiwagi)Cupressaceae129/2
B3Platycladus orientalis (Platycladus orientalis)Platycladus169/4
B4Salix babylonica (Willow)Salix114/22
B5Robinia pseudoacacia (Locust)Robinia237/3
B6Ligustrum compactum Ait (Ligustrum)Ligustrum2111/2
B7Citrus sinensis (Goose Orange)Citrus1211/13
B8Pterocarya stenoptera (Chinese Wingnut)Pterocarya108/1
B9Broussonetia papyrifera (Paper Mulberry)Broussonetia187/25
B10Pittosporum tobira (Pittosporum)Pittosporum1511/4
B11Camptotheca acuminata Decne (Camptotheca acuminata)Camptotheca1211/2
B12Albizia julibrissin Durazz (Albizzia)Albizzia88/2
B13Lindera megaphylla Hemsl (Lindera megaphylla)Lindera68/13
B14Juglans regia (Persian Walnut)Juglandaceae119/10
B15Sophora japonica (Chinese scholar tree)Sophora1911/11
B16Platycodon grandiflorus (Bellflower)Campanulaceae1310/22
B17Chimononthus praecox (Winter Sweet)Chimononthus45/28
B18Ulmus parvifolia (Chinese Elm)Ulmus1610/29
B19Prunus salicina (Plum)Prunus126/18
B20Podocarpus macrophyllus (Yacca)Podocarpus147/6
B21Spiraea salicifolia (Spiraea)Rosaceae155/4
B22Paulownia fortunei (Paulownia)paulownia89/27
B23Herba Ainsliaeae Lancifoliae (All-grass of Lanceleaf Ainsliaea)Asteraceae59/22
B24Malus pumila (Apple)Malus138/4
B25Vitis vinifera (Grapes)Vitaceae217/16
B26Acer buergerianum (Triangle Maple)Acer68/11
B27Morus alba (Mulberry)Morus214/27
B28Amygdalus davidiana (Mountain Peach)Rosaceae116/18
B29Punica granatum (Pomegranate)Punica199/27
B30Amygdalus persica (Peach)Rosaceae156/17
B31Firmiana platanifolia (Chinese parasol (tree))Firmiana179/4
B32Cinnamomum camphora (Camphor tree)Cinnamomum2310/13
B33Ligustrum quihoui (Purpus Privet)Ligustrum1210/9
B34Platanus acerifolia (Planetree)Platanus119/6
B35Fontanesia fortunei (Fontanesia)Fontanesia1410/5
B36Cerasus pseudocerasus (Cherry)Cerasus94/13
B37Vernicia fordii (Tung tree)Vernicia1210/27
B38Firmiana simple (Phoenix tree)Firmiana98/11
B39Cercis chinensis (Chinese redbud)Cercis218/24
B40Wisteria sinensis (Wisteria)Leguminosae107/21
B41Lagerstroemia indica (Crape myrtle)Lagerstroemia1810/16
B42Eriobotrya japonica (Loquat)Rosaceae205/12
B43Citrus maxima (Shaddock)Citrus1810/8
B44Koelreuteria paniculata (Goldenrain tree)Koelreuteria2110/18
B45Melia azedarach (Chinaberry)Melia2511/8

B1–B45 were species from Beibei. N, number of observation years; FMD denote timing of fruit maturity date.
3.1.2. Data on Fruit-Picking Festivals and Activities

Extensive searches were made on authoritative newspapers (including Chongqing Daily, Chongqing Evening News, and Chongqing Economic Times) and web sites (including People’s Daily Online and Tencent’s Dayu Online) for the periods October–December 2014 and January-February 2016. The purpose was to collate from these sources the opening dates for the various fruit-picking festivals. This resulted in more than 200 records. Next, the opening dates for each festival as documented by the different media were verified individually. Eventually, the sequences of dates for 11 types of FPTA were established (Figure 2).

3.1.3. Meteorological Data

Data on monthly average air temperature recorded at seven meteorological stations in Chongqing between 1980 and 2013 were acquired from Chinese Meteorological Data Online (http://data.cma.gov.cn/site/index.html). The seven stations were Fengjie, Liangping, Wanzhou, Shapingba, Fuling, Youyang, and Beibei. The data were used to analyze the climatic trends in the study area. Separately, data on monthly average air temperature recorded at the Shapingba, Dazu, Hechuan, and Jiangjin Meteorological Stations between 2007 and 2015 were used to conduct correlation analysis with the opening dates of the various festivals.

3.2. Methodology
3.2.1. Analyzing Sensitivity of FMD and FPTA to Air Temperature Changes

Correlation analyses were made on a yearly basis between (i) the temperature sequence data at the Beibei Meteorological Station and (ii) phenological observation data on FMD for 45 plants. The purpose was to determine the degree of sensitivity of FMD to CC within the study area. Correlation analyses were also made between the opening dates of the various fruit-picking festivals and air temperature at the corresponding meteorological stations. This was to ascertain whether the operators of fruit-picking festivals had taken CC into consideration.

3.2.2. Analyzing Patterns of Cyclical Changes in Air Temperature

Since CC contains regional variations, it was necessary to confirm whether the study area had experienced CC. Wavelet analysis has the advantage of being able to determine the magnitude and timing of change for a time series and hence is widely used in climate diagnostics [11, 12]. Considering that air temperature is the most important factor affecting plant phenology, this paper applied the Morlet wavelet analysis [13] to study the patterns of cyclical changes in the air temperature for Chongqing.

4. Results

4.1. Significant Changes in CC in the Study Area

There had been significant cyclical changes in the annual average air temperature of the study area between 1980 and 2013. For the real-part isolines and norm time-frequency of the wavelet transform coefficients, the positive and negative centers represent air temperature on the high and low sides, respectively.

Overall, isolines for the annual average wavelet coefficients are relatively dense around the 4–7a, 8–16a, and 26–32a temporal scales. Among these, the density for the 4–7 a temporal scale was the most prominent over the entire study period (1980–2013). Its center temporal scale was approximately 6 a, during which temperatures underwent 8.5 alternating cycles of low → high → low → high. Next was the 8–16 a temporal scale, during which density was quite high. Its center temporal scale was approximately 6 a, during which temperatures underwent 3.5 alternating cycles of low → high → low → high. Last was the 26–32a temporal scale, with its center at 29 a (Figure 3(a)).

The norm time-frequency diagram of wavelet transform coefficients indicates that, among the three temporal scales, the cyclical oscillation during 4–7a was the strongest and had the widest coverage. These mainly occurred in 1981–2006, with the oscillation center at approximately 1998. The other cyclical oscillations were relatively weak (Figure 3(b)).

4.2. FMD Are Highly-Sensitive to Air Temperature Changes

Temperature changes have significant impact on FMD, with different species having varying degrees of sensitivities. Of the 45 types of plants, 37 were sensitive to prevailing temperatures for the previous month (Table 2). Among these, the FMD of 20 plants were advanced due to rising temperatures, with the sensitivity range being 0.13–19.71 d/°C. For the four plants specifically related to fruit-picking, the sensitivity range was 3.19–5.84 d/°C. Pomegranate was the most sensitive, while shaddock was the least. On the other hand, the FMD of 17 plants were delayed due to rising temperatures, with the sensitivity range being 2.06–13.10 d/°C. The sensitivity range for the six plants related to fruit-picking was 2.06–6.64 d/°C, with apple and peach being the most and least sensitive, respectively.


NumberSpeciesFamilyPhasesAir temperatureFitting equationAdj.

B4Salix babylonica (Willow)SalixFMD
B5Robinia pseudoacacia (Locust)RobiniaFMD
B6Ligustrum compactum Ait (Ligustrum)LigustrumFMD
B7Citrus sinensis (Goose Orange)CitrusFMD
B8Pterocarya stenoptera (Chinese Wingnut)PterocaryaFMD
B9Broussonetia papyrifera (Paper Mulberry)BroussonetiaFMD
B10Pittosporum tobira (Pittosporum)PittosporumFMD
B11Camptotheca acuminata Decne (Camptotheca acuminata)CamptothecaFMD
B12Albizia julibrissin Durazz (Albizzia)AlbizziaFMD
B13Lindera megaphylla Hemsl (Lindera megaphylla)LinderaFMD
B14Juglans regia (Persian Walnut)JuglandaceaeFMD
B15Sophora japonica (Chinese scholar tree)SophoraFMD
B16Platycodon grandiflorus (Bellflower)CampanulaceaeFMD
B17Chimononthus praecox (Winter Sweet)ChimononthusFMD
B18Ulmus parvifolia (Chinese Elm)UlmusFMD
B19Prunus salicina (Plum)PrunusFMD
B20Podocarpus macrophyllus (Yacca)PodocarpusFMD
B21Spiraea salicifolia (Spiraea)RosaceaeFMD
B22Paulownia fortunei (Paulownia)paulowniaFMD
B23Herba Ainsliaeae Lancifoliae (All-grass of Lanceleaf Ainsliaea)AsteraceaeFMD
B24Malus pumila (Apple)MalusFMD
B25Vitis vinifera (Grapes)VitaceaeFMD
B26Acer buergerianum (Triangle Maple)AcerFMD
B27Morus alba (Mulberry)MorusFMD
B29Punica granatum (Pomegranate)PunicaFMD
B30Amygdalus persica (Peach)RosaceaeFMD
B32Cinnamomum camphora (Camphor tree)CinnamomumFMD
B33Ligustrum quihoui (Purpus Privet)LigustrumFMD
B35Fontanesia fortunei (Fontanesia)FontanesiaFMD
B37Vernicia fordii (Tung tree)VerniciaFMD
B38Firmiana simple (Phoenix tree)FirmianaFMD
B39Cercis chinensis (Chinese redbud)CercisFMD
B8Wisteria sinensis (Wisteria)LeguminosaeFMD
B41Lagerstroemia indica (Crape myrtle)LagerstroemiaFMD
B42Eriobotrya japonica (Loquat)RosaceaeFMD
B43Citrus maxima (Shaddock)CitrusFMD
B44Koelreuteria paniculata (Goldenrain tree)KoelreuteriaFMD
B45Melia azedarach (Chinaberry)MeliaFMD

denotes the average air temperature one month prior to fruit maturity date, where  , , and denote 10%, 5%, and 1% significance levels, respectively.

Prevailing temperatures for the previous three months affected 38 plants (Table 3). Among these, the FMD of 16 plants were advanced. The overall sensitivity range and that for the four plants directly related to fruit-picking were 1.56–9.97 d/°C and 4.18–7.23 d/°C, respectively. Pomegranate and cherry were the most and least sensitive, respectively. The FMD of the remaining 22 plants were delayed due to rising temperatures. The sensitivity range was 2.06–10.26 d/°C. Of these, the seven plants related to fruit-picking had a sensitivity range of 2.06–7.39 d/°C, with mulberry being the most sensitive and Mountain Peach the least.


NumberSpeciesFamilyPhasesAir temperatureFitting equationAdj.

B1Michelia alba DC. (white Michelia flower)MicheliaFMD
B2Cupressus funebris (Kashiwagi)CupressaceaeFMD
B3Platycladus orientalis (Platycladus orientalis)PlatycladusFMD
B4Salix babylonica (Willow)SalixFMD
B5Robinia pseudoacacia (Locust)RobiniaFMD
B6Ligustrum compactum Ait (Ligustrum)LigustrumFMD
B7Citrus sinensis (Goose Orange)CitrusFMD
B8Pterocarya stenoptera (Chinese Wingnut)PterocaryaFMD
B9Broussonetia papyrifera (Paper Mulberry)BroussonetiaFMD
B10Pittosporum tobira (Pittosporum)PittosporumFMD
B12Albizia julibrissin Durazz (Albizzia)AlbizziaFMD
B15Sophora japonica (Chinese scholar tree)SophoraFMD
B16Platycodon grandiflorus (Bellflower)CampanulaceaeFMD
B18Ulmus parvifolia (Chinese Elm)UlmusFMD
B19Prunus salicina (Plum)PrunusFMD
B20Podocarpus macrophyllus (Yacca)PodocarpusFMD
B21Spiraea salicifolia (Spiraea)RosaceaeFMD
B24Malus pumila (Apple)MalusFMD
B25Vitis vinifera (Grapes)VitaceaeFMD
B26Acer buergerianum (Triangle Maple)AcerFMD
B27Morus alba (Mulberry)MorusFMD
B28Amygdalus davidiana (Mountain Peach)RosaceaeFMD
B29Punica granatum (Pomegranate)PunicaFMD
B30Amygdalus persica (Peach)RosaceaeFMD
B31Firmiana platanifolia (Chinese parasol (tree))FirmianaFMD
B32Cinnamomum camphora (Camphor tree)CinnamomumFMD
B34Platanus acerifolia (Planetree)PlatanusFMD
B35Fontanesia fortunei (Fontanesia)FontanesiaFMD
B36Cerasus pseudocerasus (Cherry)CerasusFMD
B37Vernicia fordii (Tung tree)VerniciaFMD
B38Firmiana simple (Phoenix tree)FirmianaFMD
B39Cercis chinensis (Chinese redbud)CercisFMD
B40Wisteria sinensis (Wisteria)LeguminosaeFMD
B41Lagerstroemia indica (Crape myrtle)LagerstroemiaFMD
B42Eriobotrya japonica (Loquat)RosaceaeFMD
B43Citrus maxima (Shaddock)CitrusFMD