Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2017, Article ID 6272158, 15 pages
Research Article

A New Vortex Initialization Scheme Coupled with WRF-ARW

1Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
2Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Correspondence should be addressed to Jimmy Chi Hung Fung; kh.tsu@gnufjam

Received 21 August 2016; Revised 29 October 2016; Accepted 20 November 2016; Published 3 January 2017

Academic Editor: Anthony R. Lupo

Copyright © 2017 Jimmy Chi Hung Fung and Guangze Gao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The ability of numerical simulations to predict typhoons has been improved in recent decades. Although the track prediction is satisfactory, the intensity prediction is still far from adequate. Vortex initialization is an efficient method to improve the estimations of the initial conditions for typhoon forecasting. In this paper, a new vortex initialization scheme is developed and evaluated. The scheme requires only observational data of the radius of maximum wind and the max wind speed in addition to the global analysis data. This scheme can also satisfy the vortex boundary conditions, which means that the vortex is continuously merged into the background environment. The scheme has a low computational cost and has the flexibility to adjust the vortex structure. It was evaluated with 3 metrics: track, center sea-level pressure (CSLP), and maximum surface wind speed (MWSP). Simulations were conducted using the WRF-ARW numerical weather prediction model. Super and severe typhoon cases with insufficiently strong initial MWSP were simulated without and with the vortex initialization scheme. The simulation results were compared with the 6-hourly observational data from Hong Kong Observatory (HKO). The vortex initialization scheme improved the intensity (CSLP and MWSP) prediction results. The scheme was also compared with other initialization methods and schemes.