Advances in Mathematical Physics

Volume 2010 (2010), Article ID 146719, 17 pages

http://dx.doi.org/10.1155/2010/146719

Research Article

## A Lie Algebroid on the Wiener Space

Institut de Mathématiques, Université de Bourgogne, 21000 Dijon, France

Received 8 September 2009; Accepted 12 January 2010

Academic Editor: M. N. Hounkonnou

Copyright © 2010 Rémi Léandre. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Linked References

- A. A. Kirillov, “Local Lie algebras,”
*Russian Mathematical Surveys*, vol. 31, no. 4, pp. 55–75, 1976. View at Google Scholar · View at Zentralblatt MATH - B. A. Dubrovin and S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory,”
*Russian Mathematical Surveys*, vol. 44, no. 6, pp. 35–124, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - O. I. Mokhov, “Differential geometry of symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems,” in
*Loop Spaces and Groups of Diffeomorphisms*, vol. 217 of*Proceedings of the Steklov Institute of Mathematics*, pp. 91–125, Nauka, Moscow, Russia, 1997. View at Google Scholar - R. Léandre, “A stochastic Poisson structure,” in
*Symmetry*, vol. 1, pp. 55–63, 2009. View at Google Scholar - R. Léandre, “A Poisson structure in white-noise analysis,” in
*XXVIII Workshop of Geometrical Method in Physics*, M. Schlichenmaier and Th. Voronov, Eds., Bialowiesza, Poland, 2009. - A. Weinstein, “Poisson geometry,”
*Differential Geometry and Its Applications*, vol. 9, no. 1-2, pp. 213–238, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre, “Deformation quantization in infinite dimensional analysis,” in
*Trends in Stochastic Analysis (Festchrift in honour of H. v. Weizsaecker)*, M. Scheutzow, P. Morters, and J. Blath, Eds., vol. 353 of*London Mathematical Society Lecture Note Series*, pp. 303–325, Cambridge University Press, Cambridge, UK, 2009. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - A. S. Cattaneo, B. Dherin, and G. Felder, “Formal symplectic groupoid,”
*Communications in Mathematical Physics*, vol. 253, no. 3, pp. 645–674, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - M. Kontsevich, “Deformation quantization of Poisson manifolds,”
*Letters in Mathematical Physics*, vol. 66, no. 3, pp. 157–216, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - A. Cannas da Silva and A. Weinstein,
*Geometric Models for Noncommutative Algebras*, vol. 10 of*Berkeley Mathematics Lecture Notes*, American Mathematical Society, Providence, RI, USA, 1999. View at MathSciNet - Y. Kosmann-Schwarzbach, “Poisson manifolds, Lie algebroids, modular classes: a survey,”
*SIGMA. Symmetry, Integrability and Geometry. Methods and Applications*, vol. 4, paper 005, 30 pages, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - K. Mackenzie,
*Lie Groupoids and Lie Algebroids in Differential Geometry*, vol. 124 of*London Mathematical Society Lecture Note Series*, Cambridge University Press, Cambridge, UK, 1987. View at MathSciNet - K. C. H. Mackenzie,
*General Theory of Lie Groupoids and Lie Algebroids*, vol. 213 of*London Mathematical Society Lecture Note Series*, Cambridge University Press, Cambridge, UK, 2005. View at MathSciNet - A. Coste, P. Dazord, and A. Weinstein, “Groupoïdes symplectiques,” in
*Publications du Département de Mathématiques*, vol. 87, pp. 1–62, Université Claude Bernard, Lyon, France, 1987. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - B. Fuchssteiner, “The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems,”
*Progress of Theoretical Physics*, vol. 68, no. 4, pp. 1082–1104, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - I. M. Gelfand and I. Ya. Dorfman, “Schouten bracket and Hamiltonian operators,”
*Functional Analysis and Its Applications*, vol. 14, no. 3, pp. 71–74, 1980 (Russian). View at Google Scholar · View at MathSciNet - M. V. Karasev, “Analogues of objects of Lie groups for nonlinear Poisson brackets,”
*Mathematics of the USSR-Izvestiya*, vol. 28, pp. 497–527, 1987 (Russian). View at Google Scholar - F. Magri and C. Morosi, “A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds,”
*Quaderno*, vol. 19, 1984. View at Google Scholar - G. Dito and R. Léandre, “Stochastic Moyal product on the Wiener space,”
*Journal of Mathematical Physics*, vol. 48, no. 2, Article ID 023509, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre, “Deformation quantization in white noise analysis,”
*SIGMA. Symmetry, Integrability and Geometry. Methods and Applications*, vol. 3, paper 027, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre, “Fedosov quantization in white noise analysis,”
*Journal of Nonlinear Mathematical Physics*, vol. 15, supplement 3, pp. 251–263, 2008. View at Publisher · View at Google Scholar · View at MathSciNet - R. Léandre, “Hochschild cohomology theories in white noise analysis,”
*SIGMA. Symmetry, Integrability and Geometry. Methods and Applications*, vol. 4, paper 066, 13 pages, 2008. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre and B. Obame, “Quantization of the Connes algebra,” in preparation.
- A. Odzijewicz and T. S. Ratiu, “Banach Lie-Poisson spaces and reduction,”
*Communications in Mathematical Physics*, vol. 243, no. 1, pp. 1–54, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - P. Di Francesco, P. Mathieu, and D. Sénéchal,
*Conformal Field Theory*, Springer, Heidelberg, Germany, 1996. - D. Nualart,
*The Malliavin Calculus and Related Topics*, Probability and Its Applications, Springer, New York, NY, USA, 1995. View at MathSciNet - T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit,
*White Noise: An Infinite-Dimensional Calculu*, vol. 253 of*Mathematics and Its Applications*, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993. View at MathSciNet - P.-A. Meyer,
*Quantum Probability for Probabilists*, vol. 1610 of*Lecture Notes in Mathematics*, Springer, Berlin, Germany, 1995. - R. Léandre and A. Rogers, “Equivariant cohomology, Fock space and loop groups,”
*Journal of Physics A*, vol. 39, no. 38, pp. 11929–11946, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - D. Nualart and É. Pardoux, “Stochastic calculus with anticipating integrands,”
*Probability Theory and Related Fields*, vol. 78, no. 4, pp. 535–581, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre, “Cohomologie de Bismut-Nualart-Pardoux et cohomologie de Hochschild entière,” in
*Séminaire de Probabilités, XXX*, J. Azéma, M. Emery, and M. Yor, Eds., vol. 1626 of*Lecture Notes in Mathematics*, pp. 68–99, Springer, Berlin, Germany, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre, “Brownian cohomology of an homogeneous manifold,” in
*New Trends in Stochastic Analysis (Charingworth, 1994)*, K. D. Elworthy, S. Kusuoka, and I. Shigekawa, Eds., pp. 305–347, World Scientific, River Edge, NJ, USA, 1997. View at Google Scholar · View at MathSciNet - R. Léandre, “Stochastic cohomology and Hochschild cohomology,” in
*Development of Infinite-Dimensional Noncommutative Analysis, Kyoto, Japan 1998*, A. Hora, Ed., vol. 1099 of*RIMS Kokyuroku*, pp. 17–26, University Press, Kyoto, Kyoto, Japan, 1999. View at Google Scholar - R. Léandre, “Cover of the Brownian bridge and stochastic symplectic action,”
*Reviews in Mathematical Physics*, vol. 12, no. 1, pp. 91–137, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre, “Stochastic Adams theorem for a general compact manifold,”
*Reviews in Mathematical Physics*, vol. 13, no. 9, pp. 1095–1133, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre, “Stochastic algebraic de Rham complexes,”
*Acta Applicandae Mathematicae*, vol. 79, no. 3, pp. 217–247, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre and I. A. Volovich, “The stochastic Lévy Laplacian and Yang-Mills equation on manifolds,”
*Infinite Dimensional Analysis, Quantum Probability and Related Topics*, vol. 4, no. 2, pp. 161–172, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - P. Lévy,
*Processus Stochastiques et Mouvement Brownien*, Gauthier-Villars, Paris, France, 3rd edition, 1992. - R. H. Cameron and W. T. Martin, “Transformations of Wiener integrals under translations,”
*Annals of Mathematics*, vol. 45, pp. 386–396, 1944. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - R. Léandre, “Paths integrals in noncommutative geometry,” in
*Encyclopedia of Mathematical Physics*, J. P. Françoise, G. L. Naber, and T. S. Tsun, Eds., pp. 8–12, Elsevier, Oxford, UK, 2006. View at Google Scholar - R. Léandre, “Infinite Lebesgue distribution on a current group as an invariant distribution,” in
*Foundations of Probability and Physics IV, Vaxjoe, Sweden, 2006*, G. Adenier, C. Fuchs, and A. Khrennikov, Eds., vol. 889 of*AIP Conference Proceedings*, pp. 332–335, American Institute of Physics, Melville, NY, USA, 2007. View at Publisher · View at Google Scholar - R. Léandre, “The Lebesgue measure in infinite-dimensional spaces as an infinite-dimensional distribution,”
*Fundamental'naya i Prikladnaya Matematika*, vol. 13, no. 8, pp. 127–132, 2007 (Russian), translation in*Journal of Mathematical Sciences*, vol. 159, no. 6, pp. 833–836, 2009. View at Publisher · View at Google Scholar · View at MathSciNet - A. Asada, “Regularized calculus: an application of zeta regularization to infinite dimensional geometry and analysis,”
*International Journal of Geometric Methods in Modern Physics*, vol. 1, no. 1-2, pp. 107–157, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - D. Pickrell, “Invariant measures for unitary groups associated to Kac-Moody Lie algebras,”
*Memoirs of the American Mathematical Society*, vol. 146, no. 693, p. 125, 2000. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - J. Neveu,
*Processus Aléatoires Gaussiens*, Séminaire de Mathématiques Supérieures, no. 34, Les Presses de l'Université de Montréal, Montréal, Canada, 1968. View at MathSciNet - H. H. Kuo,
*Gaussian Measures in Banach Spaces*, Lecture Notes in Mathematics, vol. 463, Springer, Berlin, Germany, 1975. View at MathSciNet - N. Ikeda and S. Watanabe,
*Stochastic Differential Equations and Diffusion Processes*, vol. 24 of*North-Holland Mathematical Library*, North-Holland, Amsterdam, The Netherlands, 2nd edition, 1989. View at MathSciNet - P. Malliavin, “Stochastic calculus of variation and hypoelliptic operators,” in
*Proceedings of the International Symposium on Stochastic Differential Equations (Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 1976)*, K. Itô, Ed., pp. 195–263, John Wiley & Sons, New York, NY, USA, 1978. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - S. Albeverio and R. Høegh-Krohn, “Dirichlet forms and diffusion processes on rigged Hilbert spaces,”
*Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte*, vol. 40, no. 1, pp. 1–57, 1977. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - Y. Berezanskii, “The self adjointness of elliptic operators with an infinite number of variables,”
*Ukrainian Mathematical Journal*, vol. 27, pp. 729–742, 1975. View at Google Scholar - L. Gross, “Potential theory on Hilbert space,”
*Journal of Functional Analysis*, vol. 1, pp. 123–181, 1967. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - T. Hida,
*Analysis of Brownian Functionals*, Carleton Mathematical Lecture Notes, no. 1, Carleton University, Ottawa, Canada, 1975. View at MathSciNet - R. Léandre, “Long time behaviour of the Wiener process on a path group,” to appear in
*Group Theory: Classes, Representations and Connections, and Applications*.