Table of Contents Author Guidelines Submit a Manuscript
Advances in Mathematical Physics
Volume 2011, Article ID 471314, 11 pages
http://dx.doi.org/10.1155/2011/471314
Research Article

On a Chaotic Weighted Shift 𝑧 𝑝 𝑑 𝑝 + 𝟏 / 𝑑 𝑧 𝑝 + 𝟏 of Order 𝑝 in Bargmann Space

1Equipe d'Analyse Spectrale, Université de Corse, UMR-CNRS No. 6134, Quartier Grossetti, 20 250 Corté, France
2Le Prador, 129 rue du Commandant Rolland, 13008 Marseille, France

Received 19 March 2011; Accepted 9 May 2011

Academic Editor: B. G. Konopelchenko

Copyright © 2011 Abdelkader Intissar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entières,” Comptes Rendus de l'Académie des Sciences, vol. 189, pp. 473–475, 1929. View at Google Scholar
  2. G. R. MacLane, “Sequences of derivatives and normal families,” Journal d'Analyse Mathématique, vol. 2, pp. 72–87, 1952. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. G. Godefroy and J. H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds,” Journal of Functional Analysis, vol. 98, no. 2, pp. 229–269, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. K. G. Grosse-Erdmann, “Universal families and hypercyclic operators,” Bulletin American Mathematical Society, vol. 36, no. 3, pp. 345–381, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. K. G. Grosse-Erdmann, “Hypercyclic and chaotic weighted shifts,” Studia Mathematica, vol. 139, no. 1, pp. 47–68, 2000. View at Google Scholar · View at Zentralblatt MATH
  6. S. I. Ansari, “Hypercyclic and cyclic vectors,” Journal of Functional Analysis, vol. 128, no. 2, pp. 374–383, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. H. N. Salas, “Pathological hypercylic operators,” Archiv der Mathematik, vol. 86, no. 3, pp. 241–250, 2006. View at Publisher · View at Google Scholar
  8. L. Tian, J. Zhou, X. Liu, and G. Zhong, “Nonwandering operators in Banach space,” International Journal of Mathematics and Mathematical Sciences, vol. 2005, no. 24, pp. 3895–3908, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. X. Liu and L. X. Tian, “The property of non-wandering semigroup,” Journal of Jiangsu University, vol. 23, no. 5, 2002. View at Google Scholar
  10. J. Bès, K. Chan, and S. Seubert, “Chaotic unbounded differentiation operators,” Integral Equations Operators Theory, vol. 40, no. 3, pp. 257–267, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. T. Bermúdez, A. Bonilla, and J. L. Torrea, “Chaotic behavior of the Riesz transforms for Hermite expansions,” Journal of Mathematical Analysis and Applications, vol. 337, no. 1, pp. 702–711, 2008. View at Publisher · View at Google Scholar
  12. H. Emamirad and G. S. Heshmati, “Chaotic weighted shifts in Bargmann space,” Journal of Mathematical Analysis and Applications, vol. 308, no. 1, pp. 36–46, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. A. Decarreau, H. Emamirad, and A. Intissar, “Chaoticité de l'opérateur de Gribov dans l'espace de Bargmann,” Comptes Rendus de l'Académie des Sciences, vol. 331, no. 9, pp. 751–756, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform,” Communications on Pure and Applied Mathematics, vol. 14, pp. 187–214, 1961. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics, Amsterdam, 1968.
  16. J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena, Reidel Publishing Co., Lancaster, UK, 1984.
  17. A. Intissar, “Analyse de scattering d'un opérateur cubique de Heun dans l'espace de Bargmann,” Communications in Mathematical Physics, vol. 199, no. 2, pp. 243–256, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. A. Intissar, “Approximation of the semigroup generated by the Hamiltonian of Reggeon field theory in Bargmann space,” Journal of Mathematical Analysis and Applications, vol. 305, no. 2, pp. 669–689, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. A. S. F. Obada and G. M. Abd Al-Kader, “Generation and properties of a superposition of four displaced Fock states,” International Journal of Theoretical Physics, vol. 40, no. 10, pp. 1715–1735, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, “On Devaney's definition of chaos,” The American Mathematical Monthly, vol. 99, no. 4, pp. 332–334, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. A. Gulisashvili and C. R. MacCluer, “Linear chaos in the unforced quantum harmonic oscillator,” Journal of Dynamic Systems, Measurement and Control, vol. 118, no. 2, pp. 337–338, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. A. Intissar, “An elementary construction on nonlinear coherent states associated to generalized Bargmann spaces,” International Journal of Mathematics and Mathematical Sciences, Article ID 357050, 15 pages, 2010. View at Google Scholar · View at Zentralblatt MATH
  23. A. Intissar, “Explicit building of the nonlinear coherent states associated to weighted shift zpp+1/dzp+1 of order p in Bargmann representation,” . In press.
  24. A. Intissar, “On existence of non-linear coherent states associated to the operator zpp+m/dzp+m+zp+mp/dzp of order p in Bargmann's representation,” . In press.