Table of Contents Author Guidelines Submit a Manuscript
Advances in Mathematical Physics
Volume 2011 (2011), Article ID 957592, 22 pages
http://dx.doi.org/10.1155/2011/957592
Research Article

Partial Inner Product Spaces: Some Categorical Aspects

1Institut de Recherche en Mathématique et Physique (IRMP), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
2Dipartimento di Matematica e Informatica, Università di Palermo, 90123 Palermo, Italy
3Namur Center for Complex Systems (NAXYS), Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium

Received 16 March 2011; Revised 20 July 2011; Accepted 10 August 2011

Academic Editor: Partha Guha

Copyright © 2011 Jean-Pierre Antoine et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-P. Antoine and A. Grossmann, “Partial inner product spaces. I. General properties,” Journal of Functional Analysis, vol. 23, no. 4, pp. 369–378, 1976. View at Google Scholar · View at Zentralblatt MATH
  2. J.-P. Antoine and A. Grossmann, “Partial inner product spaces. II. Operators,” Journal of Functional Analysis, vol. 23, no. 4, pp. 379–391, 1976. View at Google Scholar · View at Zentralblatt MATH
  3. J.-P. Antoine, “Partial inner product spaces. III. Compatibility relations revisited,” Journal of Mathematical Physics, vol. 21, no. 2, pp. 268–279, 1980. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. J.-P. Antoine, “Partial inner product spaces. IV. Topological considerations,” Journal of Mathematical Physics, vol. 21, no. 8, pp. 2067–2079, 1980. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. J.-P. Antoine and C. Trapani, Partial Inner Product Spaces: Theory and Applications, vol. 1986 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2009. View at Publisher · View at Google Scholar
  6. J.-P. Antoine and C. Trapani, “The partial inner product space method: a quick overview,” Advances in Mathematical Physics, vol. 2010, Article ID 457635, 37 pages, 2010, erratum, Ibid., vol. 2011, Article ID 272703. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. J.-P. Antoine and C. Trapani, “Some classes of operators on partial inner product spaces,” in Proceedings of the IWOTA 2010, W. Arendt, J. Ball, J. Behrndt, K.-H. Förster, V. Mehrmann, and C. Trunk, Eds., Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, (to appear).
  8. S. Mac Lane, Categories for the Working Mathematician, Springer, Berlin, Germany, 2nd edition, 1997.
  9. S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic. A First Introduction to Topos Theory, Springer, Berlin, Germany, 1992.
  10. A. Neeman, Algebraic and Analytic Geometry, vol. 345 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 2007.
  11. M. Dörfler, H. G. Feichtinger, and K. Gröchenig, “Time-frequency partitions for the Gelfand triple (S0,L2,S0×),” Mathematica Scandinavica, vol. 98, no. 1, pp. 81–96, 2006. View at Google Scholar · View at Zentralblatt MATH
  12. P. T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, UK, 1992.
  13. D. Lambert and B. Hespel, “From Contradiction to conciliation: a way to “dualize” sheaves,” Logique et Analyse. In press, http://arxiv.org/abs/1106.6194.
  14. W. James, “Closed set sheaves and their categories,” in Inconsistent Mathematics, C. Mortensen, Ed., pp. 115–124, Kluwer Academic, Dodrecht, The Netherlands, 1995. View at Google Scholar
  15. J. C. C. McKinsey and A. Tarski, “On closed elements in closure algebras,” Annals of Mathematics, vol. 47, pp. 122–162, 1946. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, UK, 1995. View at Publisher · View at Google Scholar
  17. S. Majid, “Quantum spacetime and physical reality,” in On Space and Time, S. Majid, Ed., pp. 56–140, Cambridge University Press, Cambridge, UK, 2008. View at Google Scholar
  18. G. Köthe, Topological Vector Spaces I, Springer, Berlin, Germany, 1966.
  19. G. Bellomonte and C. Trapani, “Rigged Hilbert spaces and contractive families of Hilbert spaces,” Monatshefte für Mathematik, vol. 164, no. 3, pp. 271–285, 2010. View at Publisher · View at Google Scholar
  20. B. S. Mityagin and A. S. Shvarts, “Functors in the category of Banach spaces,” Russian Mathematicsal Surveys, vol. 19, pp. 65–127, 1964. View at Publisher · View at Google Scholar
  21. Z. Semadeni and H. Zidenberg, “Inductive and inverse limits in the category of Banach spaces,” Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 13, pp. 579–583, 1965. View at Google Scholar · View at Zentralblatt MATH
  22. G. Choquet, Lectures on Analysis, Vol. I, Integration and Topological Vector Spaces, Benjamin, Amsterdam, The Netherlands, 1969.
  23. R. S. Ward and R. O. Wells Jr., Twistor Geometry and Field Theory, Cambridge University Press, Cambridge, UK, 1990.