Table of Contents Author Guidelines Submit a Manuscript
Advances in Mathematical Physics
Volume 2014, Article ID 341964, 12 pages
Research Article

Spectral Relaxation Method and Spectral Quasilinearization Method for Solving Unsteady Boundary Layer Flow Problems

1School of Mathematical Sciences, University of Kwazulu-Natal, Private Bag X01, Pietermaritzburg, Scottsville 3209, South Africa
2Department of Mathematics, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa

Received 20 March 2014; Accepted 26 May 2014; Published 18 June 2014

Academic Editor: Raseelo Joel Moitsheki

Copyright © 2014 S. S. Motsa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Nonlinear partial differential equations (PDEs) modelling unsteady boundary-layer flows are solved by the spectral relaxation method (SRM) and the spectral quasilinearization method (SQLM). The SRM and SQLM are Chebyshev pseudospectral based methods that have been successfully used to solve nonlinear boundary layer flow problems described by systems of ordinary differential equations. In this paper application of these methods is extended, for the first time, to systems of nonlinear PDEs that model unsteady boundary layer flow. The new extension is tested on two problems: boundary layer flow caused by an impulsively stretching plate and a coupled four-equation system that models the problem of unsteady MHD flow and mass transfer in a porous space. Numerous simulation experiments are conducted to determine the accuracy and compare the computational performance of the proposed methods against the popular Keller-box finite difference scheme which is widely accepted as being one of the ideal tools for solving nonlinear PDEs that model boundary layer flow problems. The results indicate that the methods are more efficient in terms of computational accuracy and speed compared with the Keller-box.