Table of Contents Author Guidelines Submit a Manuscript
Advances in Mathematical Physics
Volume 2015, Article ID 584542, 17 pages
http://dx.doi.org/10.1155/2015/584542
Research Article

Automorphism Properties and Classification of Adinkras

1School of Physics, University of Western Australia, Perth, WA 6009, Australia
2Center for String and Particle Theory, Department of Physics, University of Maryland, College Park, MD 20742-4111, USA

Received 16 March 2015; Accepted 7 July 2015

Academic Editor: Pavel Kurasov

Copyright © 2015 B. L. Douglas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Faux and S. J. Gates Jr., “Adinkras: a graphical technology for supersymmetric representation theory,” Physical Review D, vol. 71, Article ID 065002, 2005. View at Publisher · View at Google Scholar
  2. C. F. Doran, M. G. Faux, S. J. Gates Jr. et al., “Topology types of adinkras and the corresponding representations of N-­extended supersymmetry,” http://arxiv.org/abs/0806.0050.
  3. C. F. Doran, M. G. Faux, S. J. Gates Jr. et al., “Adinkras for clifford algebras, and worldline supermultiplets,” http://arxiv.org/abs/0811.3410.
  4. C. F. Doran, M. G. Faux, S. J. Gates Jr. et al., “Relating doubly-even error-correcting codes, graphs, and irreducible representations of N-extended supersymmetry,” http://arxiv.org/abs/0806.0051.
  5. S. J. Gates Jr., J. Gonzales, B. MacGregor et al., “4D, N = 1 supersymmetry genomics (I),” Journal of High Energy Physics, vol. 2009, no. 12, article 008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. G. Faux, S. J. Gates Jr., and T. Hübsch, “Effective symmetries of the minimal supermultiplet of the N = 8 extended worldline supersymmetry,” Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 41, Article ID 415206, 2009. View at Publisher · View at Google Scholar
  7. M. G. Faux, K. M. Iga, and G. D. Landweber, “Dimensional enhancement via supersymmetry,” Advances in Mathematical Physics, vol. 2011, Article ID 259089, 45 pages, 2011. View at Publisher · View at Google Scholar
  8. C. F. Doran, M. G. Faux, S. J. Gates Jr., T. Hubsch, K. M. Iga, and G. D. Landweber, “On graph-theoretic identifications of adinkras, supersymmetry representations and superfields,” International Journal of Modern Physics A, vol. 22, no. 5, pp. 869–930, 2007. View at Publisher · View at Google Scholar
  9. K. Burghardt and S. J. Gates Jr., “Adinkra isomorphisms and ‘seeing’ shapes with eigenvalues,” http://arxiv.org/abs/1212.2731.
  10. K. Burghardt and S. J. Gates Jr., “A computer algorithm for engineering off-shell multiplets with four supercharges on the world sheet,” http://arxiv.org/abs/1209.5020.
  11. S. Naples, Classification of Adinkra graphs, http://math.bard.edu/student/pdfs/sylvia-naples.pdf.
  12. S. J. Gates Jr. and L. Rana, “A theory of spinning particles for large N-extended supersymmetry,” Physics Letters B, vol. 352, no. 1-2, pp. 50–58, 1995. View at Publisher · View at Google Scholar
  13. S. J. Gates Jr. and L. Rana, “A theory of spinning particles for large N-extended supersymmetry (II),” Physics Letters B, vol. 369, no. 3-4, pp. 262–268, 1996. View at Publisher · View at Google Scholar
  14. S. J. Gates Jr., W. D. Linch, J. Phillips, and L. Rana, “The fundamental supersymmetry challenge remains,” Gravitation and Cosmology, vol. 8, no. 1, pp. 96–100, 2002. View at Google Scholar
  15. S. J. Gates Jr., W. D. Linch, and J. Phillips, “When superspace is not enough,” http://arxiv.org/abs/hep-th/0211034.
  16. C. Godsil and G. Royle, Algebraic Graph Theory, vol. 207 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  17. A. Brouwer and W. Haemers, Spectra of Graphs, Springer, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  18. J. van Lint and J. Seidel, “Equilateral point sets in elliptic geometry,” Indagationes Mathematicae, vol. 28, pp. 335–348, 1966. View at Google Scholar
  19. C. F. Doran, M. G. Faux, S. J. Gates Jr., T. Hubsch, K. M. Iga, and G. D. Landweber, “Adinkras and the dynamics of superspace prepotentials,” http://arxiv.org/abs/hep-th/0605269.
  20. C. F. Doran, M. G. Faux, S. J. Gates Jr., T. Hubsch, K. M. Iga, and G. D. Landweber, “A counter-example to a putative classification of 1-dimensional, N-extended supermultiplets,” Advanced Studies in Theoretical Physics, vol. 2, article 99, 2008. View at Google Scholar
  21. R. L. Miller, “Doubly even codes,” http://www.rlmiller.org/de_codes/.
  22. A. Günther and G. Nebe, “Automorphisms of doubly even self-dual binary codes,” Bulletin of the London Mathematical Society, vol. 41, no. 5, pp. 769–778, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus