Table of Contents Author Guidelines Submit a Manuscript
Advances in Mathematical Physics
Volume 2015 (2015), Article ID 897120, 6 pages
http://dx.doi.org/10.1155/2015/897120
Research Article

Investigating the Nanoparticles Penetration Efficiency through Horizontal Tubes Using an Experimental Approach

College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China

Received 6 October 2014; Revised 19 January 2015; Accepted 2 February 2015

Academic Editor: Alina Adriana Minea

Copyright © 2015 Zhaoqin Yin and Zhongping Dai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

It is a complex transfer process of nanoparticles in a tube. In this paper, in order to quantify the penetration efficiency of nanoparticles in different flows condition through horizontal tubes, the experiments have been carried out with particles diameter between 6 nm and 560 nm in various lengths of sampling tube. The results were in good agreement with the theory of Gormley and Kennedy and the experiment results of Kumar et al. for particles size smaller than 100 nm. Particles penetration rate increases with increasing of the Schmidt number (Sc), and it decreases with increasing Reynolds and tube length. Particles deposition on the wall induces the changes of the mass and average diameter of particles continuously. Therefore, a nondimensional parameter (ς) defined dependency on Reynolds number and particle residence time in tube has been used to express total mass penetration efficiency and mean size growth rate through a straight tube.