Table of Contents Author Guidelines Submit a Manuscript
Advances in OptoElectronics
Volume 2011 (2011), Article ID 376369, 9 pages
http://dx.doi.org/10.1155/2011/376369
Research Article

Change of Dye Bath for Sensitisation of Nanocrystalline T i O 𝟐 Films: Enhances Performance of Dye-Sensitized Solar Cells

1Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500607, India
2Aisin Cosmos R and D Co. Ltd, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500607, India

Received 24 April 2011; Accepted 25 May 2011

Academic Editor: Surya Prakash Singh

Copyright © 2011 Malapaka Chandrasekharam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  2. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. A. Hagfeld and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995. View at Google Scholar · View at Scopus
  4. K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coordination Chemistry Reviews, vol. 177, no. 1, pp. 347–414, 1998. View at Google Scholar · View at Scopus
  5. A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Accounts of Chemical Research, vol. 33, no. 5, pp. 269–277, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Grätzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C, vol. 4, no. 2, pp. 145–153, 2003. View at Publisher · View at Google Scholar
  7. K. J. Jiang, N. Masaki, J. B. Xia, S. Noda, and S. Yanagida, “A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl- conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells,” Chemical Communications, no. 23, pp. 2460–2462, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. Md. K. Nazeeruddin, C. Klein, P. Liska, and M. Grätzel, “Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells,” Coordination Chemistry Reviews, vol. 249, no. 13-14, pp. 1460–1467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Wang, S. M. Zakeeruddin, J. E. Moser et al., “Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells,” Advanced Materials, vol. 16, no. 20, pp. 1806–1811, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-Y. Chen, H.-C. Lu, C.-G. Wu, J.-G. Chen, and K.-C. Ho, “New ruthenium complexes containing oligoalkylthiophene-substituted 1,10-phenanthroline for nanocrystalline dye-sensitized solar cells,” Advanced Functional Materials, vol. 17, no. 1, pp. 29–36, 2007. View at Publisher · View at Google Scholar
  11. D. Martineau, M. Beley, P. C. Gros, S. Cazzanti, S. Caramori, and C. A. Bignozzi, “Tuning of ruthenium complex properties using pyrrole- and pyrrolidine-containing polypyridine ligands,” Inorganic Chemistry, vol. 46, no. 6, pp. 2272–2277, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. Y. Xu, S. Sun, J. Fan, and X. Peng, “Tyrosine groups enhance photoinduced intramolecular electron transfer in polypyridyl ruthenium(II) complexes,” Journal of Photochemistry and Photobiology A, vol. 188, no. 2-3, pp. 317–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Faiz, A. I. Philippopoulos, A. G. Kontos, P. Falaras, and Z. Pikramenou, “Functional supramolecular ruthenium cyclodextrin dyes for nanocrystalline solar cells,” Advanced Functional Materials, vol. 17, no. 1, pp. 54–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. K. Nazeeruddin, A. Kay, I. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382–6390, 1993. View at Google Scholar
  15. C. J. Barbé, F. Arendse, P. Comte et al., “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” Journal of the American Ceramic Society, vol. 80, no. 12, pp. 3157–3171, 1997. View at Google Scholar · View at Scopus
  16. M. K. Nazeeruddin, P. Péchy, T. Renouard et al., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” Journal of the American Chemical Society, vol. 123, no. 8, pp. 1613–1624, 2001. View at Publisher · View at Google Scholar
  17. C. Klein, Md. K. Nazeeruddin, D. Di Censo, P. Liska, and M. Grätzel, “Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells,” Inorganic Chemistry, vol. 43, no. 14, pp. 4216–4226, 2004. View at Google Scholar · View at Scopus
  18. H. Sugihara, L. P. Singh, K. Sayama, H. Arakawa, M. K. Nazeeruddin, and M. Grätzel, “Efficient photosensitization of nanocrystalline TiO2 films by a new class of sensitizer: cis-dithiocyanato bis(4,7-dicarboxy-1,10-phenanthroline)ruthenium(II),” Chemistry Letters, no. 10, pp. 1005–1006, 1998. View at Google Scholar · View at Scopus
  19. T. Renouard, R. A. Fallahpour, M. K. Nazeeruddin et al., “Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis,” Inorganic Chemistry, vol. 41, no. 2, pp. 367–378, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 127, no. 3, pp. 808–809, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Chandrasekharam, C. Srinivasarao, T. Suresh et al., “High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells,” Journal of Chemical Sciences, vol. 123, no. 1, pp. 37–46, 2011. View at Google Scholar
  22. M. Chandrasekharam, G. Rajkumar, Ch. S. Rao, T. Suresh, and P. Y. Reddy, “Phenothiazine conjugated bipyridine as ancillary ligand in Ru(II)-complexes for application in dye sensitized solar cell,” Synthetic Metals. In press.
  23. P. Y. Reddy, L. Giribabu, C. Lyness et al., “Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine,” Angewandte Chemie—International Edition, vol. 46, no. 3, pp. 373–376, 2007. View at Publisher · View at Google Scholar · View at PubMed
  24. L. Giribabu, M. Chandrasekheram, M. L. Kantham et al., “Conjugated organic dyes for dye-sensitized solar cells,” Indian Journal of Chemistry. Section A, vol. 45, no. 3, pp. 629–634, 2006. View at Google Scholar · View at Scopus
  25. M. Chandrasekharam, G. Rajkumar, C. Srinivasa Rao et al., “Polypyridyl Ru(II)-sensitizers with extended π-system enhances the performance of dye sensitized solar cells,” Synthetic Metals, vol. 161, no. 11-12, pp. 1098–1104, 2011. View at Publisher · View at Google Scholar
  26. M. Chandrasekharam, G. Rajkumar, Ch. S. Rao, T. Suresh, and P. Y. Reddy, “Ruthenium(II)- bipyridyl with extended π-system: improved thermo-stable sensitizer for efficient and long-term durable dye sensitized solar cells,” Journal of Chemical Sciences. In press.
  27. L. Giribabu, C. Vijay Kumar, C. S. Rao et al., “High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic Dye-sensitized solar cells,” Energy and Environmental Science, vol. 2, no. 7, pp. 770–773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt, and L. Sun, “Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes,” Journal of Physical Chemistry C, vol. 112, no. 29, pp. 11023–11033, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J.-J. Cid, J.-H. Yum, S.-R. Jang et al., “Molecular cosensitization for efficient panchromatic dye-sensitized solar cells,” Angewandte Chemie—International Edition, vol. 46, no. 44, pp. 8358–8362, 2007. View at Publisher · View at Google Scholar · View at PubMed