Table of Contents Author Guidelines
Advances in OptoElectronics
Volume 2011, Article ID 491609, 4 pages
http://dx.doi.org/10.1155/2011/491609
Research Article

Fluorescence Detection 400–480 nm Using Microfluidic System Integrated GaP Photodiodes

1Department of Electrical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904, USA
2Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA 22904, USA

Received 29 April 2011; Revised 14 August 2011; Accepted 21 August 2011

Academic Editor: Zhihong Li

Copyright © 2011 Dion McIntosh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Smith, J. Z. Sanders, and R. J. Kaiser, “Fluorescence detection in automated DNA sequence analysis,” Nature, vol. 321, no. 6071, pp. 674–679, 1986. View at Google Scholar · View at Scopus
  2. M. L. Chabinyc, D. T. Chiu, J. C. McDonald et al., “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Analytical Chemistry, vol. 73, no. 18, pp. 4491–4498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Webster, M. A. Burns, D. T. Burke, and C. H. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Analytical Chemistry, vol. 73, no. 7, pp. 1622–1626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. R. A. Mathies, T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, and R. A. Street, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Analytical Chemistry, vol. 75, no. 20, pp. 5300–5305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Hoffman, “The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nature Reviews Cancer, vol. 5, no. 10, pp. 796–806, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. K. Araz, C. H. Lee, and A. Lal, “Ultrasonic separation in microfluidic capillaries,” in Proceedings of the 2003 IEEE Ultrasonics Symposium, pp. 1111–1114, October 2003.
  7. S. Jeonggi and L. P. Lee, “Fluorescence amplification by self-aligned integrated microfluidic optical systems,” in Proceedings of the 12th International Conference in TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, vol. 2, pp. 1136–1139, 2003.
  8. C. J. Easley, J. M. Karlinsey, J. M. Bienvenue et al., “A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 51, pp. 19272–19277, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. P. K. Wong, Y. K. Lee, and C. M. Ho, “Deformation of DNA molecules by hydrodynamic focusing,” Journal of Fluid Mechanics, no. 497, pp. 55–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Kaartinen, M. Salonen, L. Alli, and S. Pyorala, “Pharmacokinetics of enrofloxacin after single intravenous, intramuscular and subcutaneous injections in lactating cows,” Journal of Veterinary Pharmacology and Therapeutics, vol. 18, no. 5, pp. 357–362, 1995. View at Google Scholar · View at Scopus
  11. O. R. Idowu and J. O. Peggins, “Simple, rapid determination of enrofloxacin and ciprofloxacin in bovine milk and plasma by high-performance liquid chromatography with fluorescence detection,” Journal of Pharmaceutical and Biomedical Analysis, vol. 35, no. 1, pp. 143–153, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. X. Zhou, D. Xing, D. Zhu, Y. Tang, and L. Jia, “Development and application of a capillary electrophoresis-electrochemiluminescent method for the analysis of enrofloxacin and its metabolite ciprofloxacin in milk,” Talanta, vol. 75, no. 5, pp. 1300–1306, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. O. Ballesteros, I. Toro, V. Sanz-Nebot, A. Navalón, J. L. Vílchez, and J. Barbosa, “Determination of fluoroquinolones in human urine by liquid chromatography coupled to pneumatically assisted electrospray ionization mass spectrometry,” Journal of Chromatography B, vol. 798, no. 1, pp. 137–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. K. H. Bannefeld, H. Stass, and G. Blaschke, “Capillary electrophoresis with laser-induced fluorescence detection, an adequate alternative to high-performance liquid chromatography, for the determination of ciprofloxacin and its metabolite desethyleneciprofloxacin in human plasma,” Journal of Chromatography B, vol. 692, no. 2, pp. 453–459, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Wilson and J. Brady, “Design considerations and signal processing algorithms for laser-induced fluorescence airborne pathogen sensors,” in Proceedings of the International Society for Optical Engineering, (SPIE 5617), pp. 1–13, London, UK, 2004. View at Publisher · View at Google Scholar
  16. J. Campbell, D. McIntosh, Q. Z. F. J. Lara, and J. Landers, “Flip-chip bonded GaP photodiodes for detection of 400–480 nm fluorescence,” Photonics Technology Letters, vol. 23, no. 13, pp. 878–880, 2011. View at Publisher · View at Google Scholar
  17. A. L. Beck, B. Yang, S. Wang et al., “Quasi-direct UV/blue GaP avalanche photodetectors,” IEEE Journal of Quantum Electronics, vol. 40, no. 12, pp. 1695–1699, 2004. View at Publisher · View at Google Scholar · View at Scopus