Table of Contents Author Guidelines Submit a Manuscript
Advances in OptoElectronics
Volume 2012 (2012), Article ID 482074, 10 pages
http://dx.doi.org/10.1155/2012/482074
Research Article

Substitution of Ethynyl-Thiophene Chromophores on Ruthenium Sensitizers: Influence on Thermal and Photovoltaic Performance of Dye-Sensitized Solar Cells

1Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 607, India
2Aisin Cosmos R&D Co. Ltd, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 607, India

Received 30 April 2011; Accepted 10 October 2011

Academic Editor: Surya Prakash Singh

Copyright © 2012 Malapaka Chandrasekharam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. D. Archer and R. Hill, Clean Electricity from Photo Voltaics, Imperical College Press, London, UK, 2001.
  2. Special issue on organic-based photovoltaics, MRS Bulletin, vol. 30, no. 1, pp. 10–53.
  3. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  5. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. K. Nazeeruddin, F. De Angelis, S. Fantacci et al., “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” Journal of the American Chemical Society, vol. 127, no. 48, pp. 16835–16847, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Japanese Journal of Applied Physics Part 2, vol. 45, no. 24-28, pp. L638–L640, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature Materials, vol. 2, no. 6, pp. 402–407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser, and M. Grätzel, “Molecular-scale interface engineering of TiO2 nanocrystals: improving the efficiency and stability of dye-sensitized solar cells,” Advanced Materials, vol. 15, no. 24, pp. 2101–2104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 127, no. 3, pp. 808–809, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Wang, Ć. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “Stable ≥ 8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility,” Applied Physics Letters, vol. 86, no. 12, Article ID 123508, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Kuang, C. Klein, S. Ito et al., “High effiiciency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction cofficient Ru-sensitizer and non-volatile electrolyte,” Advanced Materials, vol. 19, pp. 1133–1137, 2007. View at Google Scholar
  13. J. R. Durrant and S. A. Haque, “Solar cells: a solid compromise,” Nature Materials, vol. 2, no. 6, pp. 362–363, 2003. View at Google Scholar · View at Scopus
  14. P. Wang, S. M. Zakeeruddin, J. E. Moser et al., “Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells,” Advanced Materials, vol. 16, no. 20, pp. 1806–1811, 2004. View at Publisher · View at Google Scholar
  15. K. J. Jiang, N. Masaki, J. B. Xia, S. Noda, and S. Yanagida, “A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl- conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells,” Chemical Communications, no. 23, pp. 2460–2462, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. R. Jang, C. Lee, H. Choi et al., “Oligophenylenevinylene-functionalized Ru(II)-bipyridine sensitizers for efficient dye-sensitized nanocrystalline TiO2 solar cells,” Chemistry of Materials, vol. 18, no. 23, pp. 5604–5608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen, and K. C. Ho, “A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells,” Angewandte Chemie International Edition, vol. 45, no. 35, pp. 5822–5825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. S. Karthikeyan, H. Wietasch, and M. Thelakkat, “Highly efficient solid-state dye-sensitized TiO2 solar cells using donor-antenna dyes capable of multistep charge-transfer cascades,” Advanced Materials, vol. 19, no. 8, pp. 1091–1095, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen, and K. C. Ho, “A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells,” Advanced Materials, vol. 19, no. 22, pp. 3888–3891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Gao, Y. Wang, D. Shi et al., “Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 130, no. 32, pp. 10720–10728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Chandrasekharam, C. Srinivasarao, T. Suresh et al., “High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells,” Journal of Chemical Sciences, vol. 123, no. 1, pp. 37–46, 2011. View at Google Scholar
  22. M. Chandrasekharam, G. Rajkumar, C. S. Rao, T. Suresh, and P. Y. Reddy, “Phenothiazine conjugated bipyridine as ancillary ligand in Ru(II)-complexes for application in dye sensitized solar cell,” Synthetic Metals, vol. 161, no. 15-16, pp. 1469–1476, 2011. View at Publisher · View at Google Scholar
  23. P. Y. Reddy, L. Giribabu, C. Lyness et al., “Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine,” Angewandte Chemie International Edition, vol. 46, no. 3, pp. 373–376, 2007. View at Publisher · View at Google Scholar
  24. L. Giribabu, M. Chandrasekheram, M. L. Kantham et al., “Conjugated organic dyes for dye-sensitized solar cells,” Indian Journal of Chemistry Section A, vol. 45, no. 3, pp. 629–634, 2006. View at Google Scholar · View at Scopus
  25. M. Chandrasekharam, G. Rajkumar, C. Srinivasa Rao et al., “Polypyridyl Ru(II)-sensitizers with extended π-system enhances the performance of dye sensitized solar cells,” Synthetic Metals, vol. 161, no. 11-12, pp. 1098–1104, 2011. View at Publisher · View at Google Scholar
  26. L. Giribabu, C. Vijay Kumar, C. S. Rao et al., “High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic Dye-sensitized solar cells,” Energy and Environmental Science, vol. 2, no. 7, pp. 770–773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Han, A. Islam, H. Chen et al., “High-efficiency dye-sensitized solar cell with a novel co-adsorbent,” Energy and Environmental Science. In press. View at Publisher · View at Google Scholar
  28. J. J. Cid, J. H. Yum, S. R. Jang et al., “Molecular cosensitization for efficient panchromatic dye-sensitized solar cells,” Angewandte Chemie International Edition, vol. 46, no. 44, pp. 8358–8362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Kuang, C. Klein, S. Ito et al., “High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells,” Advanced Functional Materials, vol. 17, no. 1, pp. 154–160, 2007. View at Publisher · View at Google Scholar
  30. B. S. Chen, K. Chen, Y. H. Hong et al., “Neutral, panchromatic Ru(ii) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance,” Chemical Communications, no. 39, pp. 5844–5846, 2009. View at Publisher · View at Google Scholar · View at Scopus