Table of Contents Author Guidelines Submit a Manuscript
Advances in OptoElectronics
Volume 2012 (2012), Article ID 495981, 6 pages
Research Article

Numerical Simulation on Electrical-Thermal Properties of Gallium-Nitride-Based Light-Emitting Diodes Embedded in Board

1State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
2Physics Department, Chongqing Normal University, Chongqing 400047, China

Received 25 March 2012; Accepted 5 July 2012

Academic Editor: Xian Cao

Copyright © 2012 Xing-ming Long et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The electrical-thermal characteristics of gallium-nitride- (GaN-) based light-emitting diodes (LED), packaged by chips embedded in board (EIB) technology, were investigated using a multiphysics and multiscale finite element code, COMSOL. Three-dimensional (3D) finite element model for packaging structure has been developed and optimized with forward-voltage-based junction temperatures of a 9-chip EIB sample. The sensitivity analysis of the simulation model has been conducted to estimate the current and temperature distribution changes in EIB LED as the blue LED chip (substrate, indium tin oxide (ITO)), packaging structure (bonding wire and chip numbers), and system condition (injection current) changed. This method proved the reliability of simulated results in advance and useful material parameters. Furthermore, the method suggests that the parameter match on Shockley's equation parameters, , , and , is a potential method to reduce the current crowding effect for the EIB LED. Junction temperature decreases by approximately 3 K to 10 K can be achieved by substrate thinning, ITO, and wire bonding. The nonlinear-decreasing characteristics of total thermal resistance that decrease with an increase in chip numbers are likely to improve the thermal performance of EIB LED modules.