Abstract

Based on alternative reduced games, several dynamic approaches are proposed to show how the three extended Shapley values can be reached dynamically from arbitrary efficient payoff vectors on multichoice games.

1. Introduction

A multichoice transferable-utility (TU) game, introduced by Hsiao and Raghavan [1], is a generalization of a standard coalition TU game. In a standard coalition TU game, each player is either fully involved or not involved at all in participation with some other agents, while in a multichoice TU game, each player is allowed to participate with many finite different activity levels. Solutions on multichoice TU games could be applied in many fields such as economics, political sciences, management, and so forth. Van den Nouweland et al. [2] referred to several applications of multichoice TU games, such as a large building project with a deadline and a penalty for every day if this deadline is overtime. The date of completion depends on the effort of how all of the people focused on the project: the harder they exert themselves, the sooner the project will be completed. This situation gives rise to a multichoice TU game. The worth of a coalition resulted from the players working in certain levels to a project is defined as the penalty for their delay of the project completion with the same efforts. Another application appears in a large company with many divisions, where the profit-making depends on their performance. This situation also gives rise to a multichoice TU game. The players are the divisions, and the worth of a coalition resulted from the divisions functioning in certain levels is the corresponding profit produced by the company.

Here we apply three solutions for multichoice TU games due to Hsiao and Raghavan [1], Derks and Peters [3], and Peters and Zank [4], respectively. Two main results are as follows. (1)A solution concept can be given axiomatic justification. Oppositely, dynamic processes can be described that lead the players to that solution, starting from an arbitrary efficient payoff vector (the foundation of a dynamic theory was laid by Stearns [5]. Related dynamic results may be found in, for example, Billera [6], Maschler and Owen [7], etc.). In Section 3, we firstly define several alternative reductions on multichoice TU games. Further, we adopt these reductions and some axioms introduced by Hsiao and Raghavan [1], Hwang and Liao [8โ€“10], and Klijn et al. [11] to show how the three extended Shapley values can be reached dynamically from arbitrary efficient payoff vectors. In the proofs of Theorems 3.2 and 3.4, we will point out how these axioms would be used in the dynamic approaches. (2)There are two important factors, the players and their activity levels, for multichoice games. Inspired by Hart and Mas-Colell [12], Hwang and Liao [8โ€“10] proposed two types of reductions by only reducing the number of the players. In Section 4, we propose two types of player-action reduced games by reducing both the number of the players and the activity levels. Based on the potential, Hart and Mas-Colell [12] showed that the Shapley value [13] satisfies consistency. Different from Hart and Mas-Colell [12], we show that the three extended Shapley values satisfy related properties of player-action consistency by applying alternative method.

2. Preliminaries

Let ๐‘ˆ be the universe of players and ๐‘โŠ†๐‘ˆ be a set of players. Suppose each player ๐‘– has ๐‘š๐‘–โˆˆโ„• levels at which he can actively participate. Let ๐‘š=(๐‘š๐‘–)๐‘–โˆˆ๐‘ be the vector that describes the number of activity levels for each player, at which he can actively participate. For ๐‘–โˆˆ๐‘ˆ, we set ๐‘€๐‘–={0,1,โ€ฆ,๐‘š๐‘–} as the action space of player ๐‘–, where the action 0 means not participating, and ๐‘€๐‘–+=๐‘€๐‘–โงต{0}. For ๐‘โŠ†U, ๐‘โ‰ โˆ…, let ๐‘€๐‘=โˆ๐‘–โˆˆ๐‘๐‘€๐‘– be the product set of the action spaces for players ๐‘ and ๐‘€๐‘+=โˆ๐‘–โˆˆ๐‘๐‘€๐‘–+. Denote the zero vector in โ„๐‘ by 0๐‘.

A multichoice TU game is a triple (๐‘,๐‘š,๐‘ฃ), where ๐‘ is a nonempty and finite set of players, ๐‘š is the vector that describes the number of activity levels for each player, and ๐‘ฃโˆถ๐‘€๐‘โ†’โ„ is a characteristic function which assigns to each action vector ๐›ผ=(๐›ผ๐‘–)๐‘–โˆˆ๐‘โˆˆ๐‘€๐‘ the worth that the players can jointly obtain when each player ๐‘– plays at activity level ๐›ผ๐‘–โˆˆ๐‘€๐‘– with ๐‘ฃ(0๐‘)=0. If no confusion can arise, a game (๐‘,๐‘š,๐‘ฃ) will sometimes be denoted by its characteristic function ๐‘ฃ. Given a multichoice game (๐‘,๐‘š,๐‘ฃ) and ๐›ผโˆˆ๐‘€๐‘, we write (๐‘,๐›ผ,๐‘ฃ) for the multichoice TU subgame obtained by restricting ๐‘ฃ to {๐›ฝโˆˆ๐‘€๐‘โˆฃ๐›ฝ๐‘–โ‰ค๐›ผ๐‘–โˆ€๐‘–โˆˆ๐‘} only. Denote the class of all multichoice TU games by ๐‘€๐ถ.

Given (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, let ๐ฟ๐‘,๐‘š={(๐‘–,๐‘˜๐‘–)โˆฃ๐‘–โˆˆ๐‘,๐‘˜๐‘–โˆˆ๐‘€๐‘–+}. A solution on ๐‘€๐ถ is a map ๐œ“ assigning to each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ an element๎€ท๐œ“๐œ“(๐‘,๐‘š,๐‘ฃ)=๐‘–,๐‘˜๐‘–๎€ธ(๐‘,๐‘š,๐‘ฃ)(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘šโˆˆโ„๐ฟ๐‘,๐‘š.(2.1) Here ๐œ“๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ) is the power index or the value of the player ๐‘– when he takes action ๐‘˜๐‘– to play game ๐‘ฃ. For convenience, given (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and a solution ๐œ“ on ๐‘€๐ถ, we define ๐œ“๐‘–,0(๐‘,๐‘š,๐‘ฃ)=0 for all ๐‘–โˆˆ๐‘.

To state the three extended Shapley values, some more notations will be needed. Given ๐‘†โŠ†๐‘, let |S| be the number of elements in ๐‘† and let ๐‘’๐‘†(๐‘) be the binary vector in โ„๐‘ whose component ๐‘’๐‘†๐‘–(๐‘) satisfies๐‘’๐‘†๐‘–๎ƒฏ(๐‘)=1if๐‘–โˆˆS,0otherwise.(2.2) Note that if no confusion can arise ๐‘’๐‘†๐‘–(๐‘) will be denoted by ๐‘’๐‘†๐‘–.

Given (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and ๐›ผโˆˆ๐‘€๐‘, we define ๐‘†(๐›ผ)={๐‘˜โˆˆ๐‘โˆฃ๐›ผ๐‘˜โ‰ 0} and โˆ‘โ€–๐›ผโ€–=๐‘–โˆˆ๐‘๐›ผ๐‘–. Let ๐›ผ,๐›ฝโˆˆโ„๐‘, we say ๐›ฝโ‰ค๐›ผ if ๐›ฝ๐‘–โ‰ค๐›ผ๐‘– for all ๐‘–โˆˆ๐‘.

The analogue of unanimity games for multichoice games are minimal effort games (๐‘,๐‘š,๐‘ข๐›ผ๐‘), where ๐›ผโˆˆ๐‘€๐‘, ๐›ผโ‰ 0๐‘, defined by for all ๐›ฝโˆˆ๐‘€๐‘,๐‘ข๐›ผ๐‘๎ƒฏ(๐›ฝ)=1if๐›ฝโ‰ฅ๐›ผ;0otherwise.(2.3) It is known that for (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ it holds that โˆ‘๐‘ฃ=๐›ผโˆˆ๐‘€๐‘โงต{0๐‘}๐‘Ž๐›ผ(๐‘ฃ)๐‘ข๐›ผ๐‘, where ๐‘Ž๐›ผโˆ‘(๐‘ฃ)=๐‘†โŠ†๐‘†(๐›ผ)(โˆ’1)|๐‘†|๐‘ฃ(๐›ผโˆ’๐‘’๐‘†).

Here we apply three extensions of the Shapley value for multichoice games due to Hsiao and Raghavan [1], Derks and Peters [3], and Peters and Zank [4].

Definition 2.1. (i) (Hsiao and Raghavan, [1]).
The H&R Shapley value ฮ› is the solution on ๐‘€๐ถ which associates with each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and each player ๐‘–โˆˆ๐‘ and each ๐‘˜๐‘–โˆˆ๐‘€+๐‘– the value (Hsiao and Raghavan [1] provided an alternative formula of the H&R Shapley value. Hwang and Liao [9] defined the H&R Shapley value in terms of the dividends) ฮ›๐‘–,๐‘˜๐‘–๎“(๐‘,๐‘š,๐‘ฃ)=๐›ผโˆˆ๐‘€๐‘๐›ผ๐‘–โ‰ค๐‘˜๐‘–๐‘Ž๐›ผ(๐‘ฃ)||||๐‘†(๐›ผ).(2.4) Note that the so-called dividend ๐‘Ž๐›ผ(๐‘ฃ) is divided equally among the necessary players.
(ii) (Derks and Peters, [3]).
The D&P Shapley value ฮ˜ is the solution on ๐‘€๐ถ which associates with each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and each player ๐‘–โˆˆ๐‘ and each ๐‘˜๐‘–โˆˆ๐‘€+๐‘– the value ฮ˜๐‘–,๐‘˜๐‘–๎“(๐‘,๐‘š,๐‘ฃ)=๐›ผโˆˆ๐‘€๐‘๐›ผ๐‘–โ‰ฅ๐‘˜๐‘–๐‘Ž๐›ผ(๐‘ฃ)โ€–๐›ผโ€–.(2.5) Note that the so-called dividend ๐‘Ž๐›ผ(๐‘ฃ) is divided equally among the necessary levels.
(iii) (Peters and Zank, [4]).
The P&Z Shapley value ฮ“ is the solution on ๐‘€๐ถ which associates with each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and each player ๐‘–โˆˆ๐‘ and each ๐‘˜๐‘–โˆˆ๐‘€+๐‘– the value (Peters and Zank [4] defined the P&Z Shapley value by fixing its values on minimal effort games and imposing linearity. Hwang and Liao [8] defined the P&Z Shapley value based on the dividends) ฮ“๐‘–,๐‘˜๐‘–๎“(๐‘,๐‘š,๐‘ฃ)=๐›ผโˆˆ๐‘€๐‘๐›ผ๐‘–=๐‘˜๐‘–๐‘Ž๐›ผ(๐‘ฃ)||||๐‘†(๐›ผ).(2.6) Clearly, the P&Z Shapley value is a subdivision of the H&R Shapley value. For all (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and for all (๐‘–,k๐‘–)โˆˆ๐ฟ๐‘,๐‘š, ฮ›๐‘–,๐‘˜๐‘–๎“(๐‘,๐‘š,๐‘ฃ)=๐›ผโˆˆ๐‘€๐‘๐›ผ๐‘–โ‰ค๐‘˜๐‘–๐‘Ž๐›ผ(๐‘ฃ)||||=๐‘†(๐›ผ)๐‘˜๐‘–๎“๐‘ก๐‘–=1๎“๐›ผโˆˆ๐‘€๐‘๐›ผ๐‘–=๐‘ก๐‘–๐‘Ž๐›ผ(๐‘ฃ)||||=๐‘†(๐›ผ)๐‘˜๐‘–๎“๐‘ก๐‘–=1ฮ“๐‘–,๐‘ก๐‘–(๐‘,๐‘š,๐‘ฃ).(2.7)

3. Axioms and Dynamic Approaches

In this section, we propose dynamic processes to illustrate that the three extended Shapley values can be reached by players who start from an arbitrary efficient solution.

In order to provide several dynamic approaches, some more definitions will be needed. Let ๐œ“ be a solution on ๐‘€๐ถ. ๐œ“ satisfies the following. (i)1-efficiency (1EFF) if for each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, โˆ‘๐‘–โˆˆ๐‘†(๐‘š)๐œ“๐‘–,๐‘š๐‘–(๐‘,๐‘š,๐‘ฃ)=๐‘ฃ(๐‘š).(ii)2-efficiency (2EFF) if for each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, โˆ‘๐‘–โˆˆ๐‘†(๐‘š)โˆ‘๐‘š๐‘–๐‘˜๐‘–=1๐œ“๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ)=๐‘ฃ(๐‘š).

The following axioms are analogues of the balanced contributions property due to Myerson [14]. The solution ๐œ“ satisfies the following. (i)1-strong balanced contributions (1SBC) if for each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and (๐‘–,๐‘˜๐‘–),(๐‘—,๐‘˜๐‘—)โˆˆ๐ฟ๐‘,๐‘š,๐‘–โ‰ ๐‘—, ๐œ“๐‘–,๐‘˜๐‘–๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘—},๐‘˜๐‘—๎€ธ๎€ธ,๐‘ฃโˆ’๐œ“๐‘–,๐‘˜๐‘–๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘—}๎€ธ๎€ธ,0,๐‘ฃ=๐œ“๐‘—,๐‘˜๐‘—๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘–},๐‘˜๐‘–๎€ธ๎€ธ,๐‘ฃโˆ’๐œ“๐‘—,๐‘˜๐‘—๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘–}๎€ธ๎€ธ.,0,๐‘ฃ(3.1)(ii)2-strong balanced contributions (2SBC) if for each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and (๐‘–,๐‘˜๐‘–),(๐‘—,๐‘˜๐‘—)โˆˆ๐ฟ๐‘,๐‘š,๐‘–โ‰ ๐‘—, ๐œ“๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ)โˆ’๐œ“๐‘–,๐‘˜๐‘–๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘—},๐‘˜๐‘—๎€ธ๎€ธโˆ’1,๐‘ฃ=๐œ“๐‘—,๐‘˜๐‘—(๐‘,๐‘š,๐‘ฃ)โˆ’๐œ“๐‘—,๐‘˜๐‘—๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘–},๐‘˜๐‘–๎€ธ๎€ธ.โˆ’1,๐‘ฃ(3.2)(iii)3-strong balanced contributions (3SBC) if for each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and (๐‘–,๐‘˜๐‘–),(๐‘—,๐‘˜๐‘—)โˆˆ๐ฟ๐‘,๐‘š,๐‘–โ‰ ๐‘—, ๐œ“๐‘–,๐‘˜๐‘–๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘—},๐‘˜๐‘—๎€ธ๎€ธ,๐‘ฃโˆ’๐œ“๐‘–,๐‘˜๐‘–๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘—},๐‘˜๐‘—๎€ธ๎€ธโˆ’1,๐‘ฃ=๐œ“๐‘—,๐‘˜๐‘—๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘–},๐‘˜๐‘–๎€ธ๎€ธ,๐‘ฃโˆ’๐œ“๐‘—,๐‘˜๐‘—๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘–},๐‘˜๐‘–๎€ธ๎€ธ.โˆ’1,๐‘ฃ(3.3)

The following axiom was introduced by Hwang and Liao ([9]). The solution ๐œ“ satisfies the following. (i)Independence of individual expansions (IIE) if for each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and each (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š, ๐‘—โ‰ ๐‘š๐‘–, ๐œ“๐‘–,๐‘˜๐‘–๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘–},๐‘˜๐‘–๎€ธ๎€ธ,๐‘ฃ=๐œ“๐‘–,๐‘˜๐‘–๎€ท๎€ท๐‘š๐‘,๐‘โงต{๐‘–},๐‘˜๐‘–๎€ธ๎€ธ+1,๐‘ฃ=โ‹ฏ=๐œ“๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ).(3.4)

In the framework of multichoice games, IIE asserts that whenever a player gets available higher activity level, the payoff for all original levels should not be changed under condition that other players are fixed.

The following axiom was introduced by Klijn et al. [11]. The solution ๐œ“ satisfies the following. (i)Equal loss (EL) if for each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and each (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š, ๐‘˜๐‘–โ‰ ๐‘š๐‘–, ๐œ“๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ)โˆ’๐œ“๐‘–,๐‘˜๐‘–๎€ท๐‘,๐‘šโˆ’๐‘’{๐‘–}๎€ธ,๐‘ฃ=๐œ“๐‘–,๐‘š๐‘–(๐‘,๐‘š,๐‘ฃ).(3.5)

Klijn et al. [11] provided an interpretation of the equal loss property as follows. EL is also inspired by the balanced contributions property of Myerson [14]. In the framework of multichoice games, EL says that whenever a player gets available higher activity level the payoff for all original levels changes with an amount equal to the payoff for the highest level in the new situation. Note that EL is a vacuous property for standard coalition TU games.

Some considerable weakenings of the previous axioms are as follows. Weak 1-efficiency (1WEFF) simply says that for all (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ with |๐‘†(๐‘š)|=1, ๐œ“ satisfies 1EFF. Weak 2-efficiency (2WEFF) simply says that for all (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ with |๐‘†(๐‘š)|=1, ๐œ“ satisfies 2EFF. 1-upper balanced contributions (1UBC) only requires that 1SBC holds if ๐‘˜๐‘–=๐‘š๐‘– and ๐‘˜๐‘—=๐‘š๐‘—. 2-upper balanced contributions (2UBC) only requires that 2SBC or 3SBC holds if ๐‘˜๐‘–=๐‘š๐‘– and ๐‘˜๐‘—=๐‘š๐‘—. Weak independence of individual expansions (WIIE) simply says that for all (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ with |๐‘†(๐‘š)|=1, ๐œ“ satisfies IIE. Weak equal loss (WEL) simply says that for all (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ with |๐‘†(๐‘š)|=1, ๐œ“ satisfies EL.

Subsequently, we recall the reduced games and related consistency properties introduced by Hwang and Liao [8โ€“10]. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, ๐‘†โŠ†๐‘โงต{โˆ…} and ๐œ“ be a solution. (i)The 1-reduced game (๐‘†,๐‘š๐‘†,๐‘ฃ๐œ“1,๐‘†) with respect to ๐œ“ and ๐‘† is defined as, for all ๐›ผโˆˆ๐‘€๐‘†, ๐‘ฃ๐œ“1,๐‘†(๎€ท๐›ผ)=๐‘ฃ๐›ผ,๐‘š๐‘โงต๐‘†๎€ธโˆ’๎“๐‘–โˆˆ๐‘โงต๐‘†๐œ“๐‘–,๐‘š๐‘–๎€ท๎€ท๐‘,๐›ผ,๐‘š๐‘โงต๐‘†๎€ธ๎€ธ.,๐‘ฃ(3.6)(ii)The 2-reduced game (๐‘†,๐‘š๐‘†,๐‘ฃ๐œ“2,๐‘†) with respect to ๐œ“ and ๐‘† is defined as, for all ๐›ผโˆˆ๐‘€๐‘†, ๐‘ฃ๐œ“2,๐‘†๎€ท(๐›ผ)=๐‘ฃ๐›ผ,๐‘š๐‘โงต๐‘†๎€ธโˆ’๎“๐‘š๐‘–โˆˆ๐‘โงต๐‘†๐‘–๎“๐‘˜๐‘–=1๐œ“๐‘–,๐‘˜๐‘–๎€ท๎€ท๐‘,๐›ผ,๐‘š๐‘โงต๐‘†๎€ธ๎€ธ,๐‘ฃ.(3.7)(iii)๐œ“ on ๐‘€๐ถ satisfies 1-consistency (1CON) if for all (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, for all ๐‘†โŠ†๐‘ and for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘†,๐‘š๐‘†, ๐œ“๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ)=๐œ“๐‘–,๐‘˜๐‘–(๐‘†,๐‘š๐‘†,๐‘ฃ๐œ“1,๐‘†). (iv)๐œ“ on ๐‘€๐ถ satisfies 2-consistency (2CON) if for all (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, for all ๐‘†โŠ†๐‘ and for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘†,๐‘š๐‘†, ๐œ“๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ)=๐œ“๐‘–,๐‘˜๐‘–(๐‘†,๐‘š๐‘†,๐‘ฃ๐œ“2,๐‘†).

Remark 3.1. Hwang and Liao [8โ€“10] characterized the solutions ฮ›, ฮ“, and ฮ˜ by means of 1CON and 2CON as follows.(i)The solution ฮ› is the only solution satisfying 1WEFF (1EFF), WIIE (IIE), 1UBC (1SBC), and 1CON.(ii)The solution ฮ˜ is the only solution satisfying 2WEFF (2EFF), WEL (EL), 2UBC (2SBC), and 2CON.(iii)The solution ฮ“ is the only solution satisfying 2WEFF (2EFF), WIIE (IIE), 2UBC (3SBC), and 2CON.

Next, we will find dynamic processes that lead the players to solutions, starting from arbitrary efficient payoff vectors.

Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ. A payoff vector of (๐‘,๐‘š,๐‘ฃ) is a vector (๐‘ฅ๐‘–,๐‘˜๐‘–)(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘šโˆˆโ„๐ฟ๐‘,๐‘š where ๐‘ฅ๐‘–,๐‘˜๐‘– denotes the payoff to player ๐‘– corresponding to his activity level ๐‘˜๐‘– for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š. A payoff vector ๐‘ฅ of (๐‘,๐‘š,๐‘ฃ) is 1-efficient (1EFF) if โˆ‘๐‘–โˆˆ๐‘๐‘ฅ๐‘–,๐‘š๐‘–=๐‘ฃ(๐‘š). ๐‘ฅ is 2-efficient (2EFF) if โˆ‘๐‘–โˆˆ๐‘โˆ‘๐‘˜๐‘–โˆˆ๐‘€+๐‘–๐‘ฅ๐‘–,๐‘˜๐‘–=๐‘ฃ(๐‘š). Moreover, the sets of 1-preimputations and 2-preimputations of (๐‘,๐‘š,๐‘ฃ) are denoted by ๐‘‹1๎‚†(๐‘,๐‘š,๐‘ฃ)=๐‘ฅโˆˆโ„๐ฟ๐‘,๐‘š๎‚‡,๐‘‹โˆฃ๐‘ฅis1EFFin(๐‘,๐‘š,๐‘ฃ)2๎‚†(๐‘,๐‘š,๐‘ฃ)=๐‘ฅโˆˆโ„๐ฟ๐‘,๐‘š๎‚‡.โˆฃ๐‘ฅis2EFFin(๐‘,๐‘š,๐‘ฃ)(3.8)

In order to exhibit such processes, let us define two alternative reduced games as follows. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, ๐‘†โŠ†๐‘, and let ๐œ“ be a solution and ๐‘ฅ a payoff vector. (i)The (1,๐œ“)-reduced game (๐‘†,๐‘š๐‘†,๐‘ฃ๐‘ฅ,๐œ“1,๐‘†) with respect to ๐‘†, ๐‘ฅ, and ๐œ“ is defined as, for all ๐›ผโˆˆ๐‘€๐‘†, ๐‘ฃ๐‘ฅ,๐œ“1,๐‘†(โŽงโŽชโŽจโŽชโŽฉ๎“๐›ผ)=๐‘ฃ(๐‘š)โˆ’๐‘–โˆˆ๐‘โงต๐‘†๐‘ฅ๐‘–,๐‘š๐‘–,๐›ผ=๐‘š๐‘†,๐‘ฃ๐œ“1,๐‘†(๐›ผ),otherwise.(3.9)(ii)The (2,๐œ“)-reduced game (๐‘†,๐‘š๐‘†,๐‘ฃ๐‘ฅ,๐œ“2,๐‘†) with respect to ๐‘†, ๐‘ฅ, and ๐œ“ is defined as, for all ๐›ผโˆˆ๐‘€๐‘†, ๐‘ฃ๐‘ฅ,๐œ“2,๐‘†โŽงโŽชโŽจโŽชโŽฉ๎“(๐›ผ)=๐‘ฃ(๐‘š)โˆ’๐‘–โˆˆ๐‘โงต๐‘†๎“๐‘˜๐‘–โˆˆ๐‘€+๐‘ฅ๐‘–,๐‘˜๐‘–,๐›ผ=๐‘š๐‘†,๐‘ฃ๐œ“2,๐‘†(๐›ผ),otherwise.(3.10)

Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, ๐‘โ‰ฅ3 and (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š. Inspired by Maschler and Owen [7], we define ๐‘“๐‘–,๐‘˜๐‘–โˆถ๐‘‹1(๐‘,๐‘š,๐‘ฃ)โ†’โ„, ๐‘”๐‘–,๐‘˜๐‘–โˆถ๐‘‹2(๐‘,๐‘š,๐‘ฃ)โ†’โ„, โ„Ž๐‘–,๐‘˜๐‘–โˆถ๐‘‹2(๐‘,๐‘š,๐‘ฃ)โ†’โ„ to be as follows:(i)๐‘“๐‘–,๐‘˜๐‘–(๐‘ฅ)=๐‘ฅ๐‘–,๐‘˜๐‘–โˆ‘+๐‘กโ‹…๐‘—โˆˆ๐‘โงต{๐‘–}(ฮ›๐‘–,๐‘˜๐‘–({๐‘–,๐‘—},๐‘š{๐‘–,๐‘—},๐‘ฃ๐‘ฅ,ฮ›1,{๐‘–,๐‘—})โˆ’๐‘ฅ๐‘–,๐‘˜๐‘–), (ii)๐‘”๐‘–,๐‘˜๐‘–(๐‘ฅ)=๐‘ฅ๐‘–,๐‘˜๐‘–โˆ‘+๐‘กโ‹…๐‘—โˆˆ๐‘โงต{๐‘–}(ฮ˜๐‘–,๐‘˜๐‘–({๐‘–,๐‘—},๐‘š{๐‘–,๐‘—},๐‘ฃ๐‘ฅ,ฮ˜2,{๐‘–,๐‘—})โˆ’๐‘ฅ๐‘–,๐‘˜๐‘–), (iii)โ„Ž๐‘–,๐‘˜๐‘–(๐‘ฅ)=๐‘ฅ๐‘–,๐‘˜๐‘–โˆ‘+๐‘กโ‹…๐‘—โˆˆ๐‘โงต{๐‘–}(ฮ“๐‘–,๐‘˜๐‘–({๐‘–,๐‘—},๐‘š{๐‘–,๐‘—},๐‘ฃ๐‘ฅ,ฮ“2,{๐‘–,๐‘—})โˆ’๐‘ฅ๐‘–,๐‘˜๐‘–),

where ๐‘ก is a fixed positive number, which reflects the assumption that player ๐‘– does not ask for adequate correction (when ๐‘ก=1) but only (usually) a fraction of it. It is easy to check that (๐‘“๐‘–,๐‘˜๐‘–(๐‘ฅ))(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘šโˆˆ๐‘‹1(๐‘,๐‘š,๐‘ฃ) if ๐‘ฅโˆˆ๐‘‹1(๐‘,๐‘š,๐‘ฃ), (๐‘”๐‘–,๐‘˜๐‘–(๐‘ฅ))(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘šโˆˆ๐‘‹2(๐‘,๐‘š,๐‘ฃ), and (โ„Ž๐‘–,๐‘˜๐‘–(๐‘ฅ))(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘šโˆˆ๐‘‹2(๐‘,๐‘š,๐‘ฃ) if ๐‘ฅโˆˆ๐‘‹2(๐‘,๐‘š,๐‘ฃ).

Inspired by Maschler and Owen [7], we define correction functions ๐‘“๐‘–,๐‘˜๐‘–,๐‘”๐‘–,๐‘˜๐‘–,โ„Ž๐‘–,๐‘˜๐‘– on multichoice games. In the following, we provided some discussions which are analogues to the discussion of Maschler and Owen [7]. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and ๐‘ฅ be a 1-efficient payoff vector. By a process of induction we assume that the players have already agreed on the solution ฮ› for all ๐‘-person games, 1<๐‘<|๐‘|. In particular, we assume that they agreed on ฮ› for 1-person games (involving only Pareto optimality) and for 2-person games (which are side-payment games after an appropriate change in the utility scale of one player). Now somebody suggests that ๐‘ฅ should be the solution for an ๐‘›-person game (N,๐‘š,๐‘ฃ), thus suggesting a solution concept ฮจ, which should satisfyฮจ๎€ท๐‘ƒ,๐‘š๎…ž๎€ธ=๎ƒฏฮ›๎€ท,๐‘ข๐‘ƒ,๐‘š๎…ž๎€ธ,๎€ท,๐‘ข๐‘ƒ,๐‘š๎…ž๎€ธ||๐‘ƒ||<||๐‘||,๎€ท,๐‘ขโˆˆ๐‘€๐ถ,๐‘ฅ,(๐‘,๐‘š,๐‘ฃ)=๐‘ƒ,๐‘š๎…ž๎€ธ.,๐‘ข(3.11) On the basis of this ฮจ, the members of a coalition ๐‘†={๐‘–,๐‘—} will examine ๐‘ฃ๐‘ฅ,ฮ›1,๐‘† for related 1-consistency. If the solution turns out to be inconsistent, they will modify ๐‘ฅ โ€œin the directionโ€ which is dictated by ฮ›๐‘–,๐‘˜๐‘–(๐‘†,๐‘š๐‘†,๐‘ฃ๐‘ฅ,ฮ›1,๐‘†) in a manner which will be explained subsequently (see the definition of ๐‘“๐‘–,๐‘˜๐‘–). These modifications, done simultaneously by all 2-person coalitions, will lead to a new payoff vector ๐‘ฅโˆ— and the process will repeat. The hope is that it will converge and, moreover, converge to ฮ›(๐‘,๐‘š,๐‘ฃ). Similar discussions could be used to ๐‘”๐‘–,๐‘˜๐‘– and โ„Ž๐‘–,๐‘˜๐‘–.

Theorem 3.2. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and ๐‘ฅโˆˆ๐‘‹1(๐‘,๐‘š,๐‘ฃ). Define ๐‘ฅ0=๐‘ฅ,๐‘ฅ1=(๐‘“๐‘–,๐‘˜๐‘–(๐‘ฅ0))(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š,โ€ฆ,๐‘ฅ๐‘ž=(๐‘“๐‘–,๐‘˜๐‘–(๐‘ฅ๐‘žโˆ’1))(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š for all ๐‘žโˆˆโ„•. (1)If 0<๐‘ก<4/|๐‘|, then for all ๐‘–โˆˆ๐‘ and for all ๐‘ฅโˆˆ๐‘‹1(๐‘,๐‘š,๐‘ฃ), {๐‘ฅ๐‘ž๐‘–,๐‘š๐‘–}โˆž๐‘ž=1 converges to ฮ›๐‘–,๐‘š๐‘–(๐‘,๐‘š,๐‘ฃ).(2)If 0<๐‘ก<4/|๐‘|, then for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š and for all ๐‘ฅโˆˆ๐‘‹1(๐‘,(๐‘š๐‘โงต{๐‘–},๐‘˜๐‘–),๐‘ฃ), {๐‘ฅ๐‘ž๐‘–,๐‘˜๐‘–}โˆž๐‘ž=1 converges to ฮ›๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ).

Proof. Fix (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and ๐‘ฅโˆˆ๐‘‹1(๐‘,๐‘š,๐‘ฃ). To prove (1), let ๐‘–,๐‘—โˆˆ๐‘†(๐‘š) and ๐‘†={๐‘–,๐‘—}. By 1EFF and 1UBC of ฮ›, and definitions of ๐‘ฃฮ›1,๐‘† and ๐‘ฃ๐‘ฅ,ฮ›1,๐‘†, ฮ›๐‘–,๐‘š๐‘–๎‚€๐‘†,๐‘š๐‘†,๐‘ฃ๐‘ฅ,ฮ›1,๐‘†๎‚+ฮ›๐‘—,๐‘š๐‘—๎‚€๐‘†,๐‘š๐‘†,๐‘ฃ๐‘ฅ,ฮ›1,๐‘†๎‚=๐‘ฅ๐‘–,๐‘š๐‘–+๐‘ฅ๐‘—,๐‘š๐‘—ฮ›,(by1EFFofฮ›),(3.12)๐‘–,๐‘š๐‘–๎‚€๐‘†,๐‘š๐‘†,๐‘ฃ๐‘ฅ,ฮ›1,๐‘†๎‚โˆ’ฮ›๐‘—,๐‘š๐‘—๎‚€๐‘†,๐‘š๐‘†,๐‘ฃ๐‘ฅ,ฮ›1,๐‘†๎‚=ฮ›๐‘–,๐‘š๐‘–๎‚€๎€ท๐‘š๐‘†,๐‘†โงต{๐‘—}๎€ธ,0,๐‘ฃ๐‘ฅ,ฮ›1,๐‘†๎‚โˆ’ฮ›๐‘—,๐‘š๐‘—๎‚€๎€ท๐‘š๐‘†,๐‘†โงต{๐‘–}๎€ธ,0,๐‘ฃ๐‘ฅ,ฮ›1,๐‘†๎‚(by1UBCofฮ›)=ฮ›๐‘–,๐‘š๐‘–๎‚€๎€ท๐‘š๐‘†,๐‘†โงต{๐‘—}๎€ธ,0,๐‘ฃฮ›1,๐‘†๎‚โˆ’ฮ›๐‘—,๐‘š๐‘—๎‚€๎€ท๐‘š๐‘†,๐‘†โงต{๐‘–}๎€ธ,0,๐‘ฃฮ›1,๐‘†๎‚๎‚€byde๏ฌnitionof๐‘ฃฮ›1,๐‘†๎‚=ฮ›๐‘–,๐‘š๐‘–๎‚€๐‘†,๐‘š๐‘†,๐‘ฃฮ›1,๐‘†๎‚โˆ’ฮ›๐‘—,๐‘š๐‘—๎‚€๐‘†,๐‘š๐‘†,๐‘ฃฮ›1,๐‘†๎‚.(by1UBCofฮ›).(3.13) Therefore, ๎‚ƒฮ›2โ‹…๐‘–,๐‘š๐‘–๎‚€๐‘†,๐‘š๐‘†,๐‘ฃ๐‘ฅ,ฮ›1,๐‘†๎‚โˆ’๐‘ฅ๐‘–,๐‘š๐‘–๎‚„=ฮ›๐‘–,๐‘š๐‘–๎‚€๐‘†,๐‘š๐‘†,๐‘ฃฮ›1,๐‘†๎‚โˆ’ฮ›๐‘—,๐‘š๐‘—๎‚€๐‘†,๐‘š๐‘†,๐‘ฃฮ›1,๐‘†๎‚โˆ’๐‘ฅ๐‘–,๐‘š๐‘–+๐‘ฅ๐‘—,๐‘š๐‘—.(3.14)
By definition of ๐‘“, 1CON and 1EFF of ฮ› and (3.14), ๐‘“๐‘–,๐‘š๐‘–(๐‘ฅ)=๐‘ฅ๐‘–,๐‘š๐‘–+๐‘ก2โ‹…โŽกโŽขโŽขโŽฃ๎“๐‘—โˆˆ๐‘โงต{๐‘–}ฮ›๐‘–,๐‘š๐‘–๎‚€{๐‘–,๐‘—},๐‘š{๐‘–,๐‘—},๐‘ฃฮ›1,{๐‘–,๐‘—}๎‚โˆ’๎“๐‘—โˆˆ๐‘โงต{๐‘–}๐‘ฅ๐‘–,๐‘š๐‘–โˆ’๎“๐‘—โˆˆ๐‘โงต{๐‘–}ฮ›๐‘—,๐‘š๐‘—๎‚€{๐‘–,๐‘—},๐‘š{๐‘–,๐‘—},๐‘ฃฮ›1,{๐‘–,๐‘—}๎‚+๎“๐‘—โˆˆ๐‘โงต{๐‘–}๐‘ฅ๐‘—,๐‘š๐‘—โŽคโŽฅโŽฅโŽฆ๎€ทbyde๏ฌnitionof๐‘“๐‘–,๐‘š๐‘–๎€ธandequation(3.14)=๐‘ฅ๐‘–,๐‘š๐‘–+๐‘ก2โ‹…โŽกโŽขโŽขโŽฃ๎“๐‘˜โˆˆ๐‘โงต{๐‘–}ฮ›๐‘–,๐‘š๐‘–๎€ท||๐‘||๎€ธ๐‘ฅ(๐‘,๐‘š,๐‘ฃ)โˆ’โˆ’1๐‘–,๐‘š๐‘–โˆ’๎“๐‘—โˆˆ๐‘โงต{๐‘–}ฮ›๐‘—,๐‘š๐‘—(๎€ท๐‘,๐‘š,๐‘ฃ)+๐‘ฃ(๐‘š)โˆ’๐‘ฅ๐‘–,๐‘š๐‘–๎€ธโŽคโŽฅโŽฅโŽฆ(by1CONofฮ›and1EFFof๐‘ฅ)=๐‘ฅ๐‘–,๐‘š๐‘–+๐‘ก2โ‹…||๐‘||๎€ธฮ›๎€บ๎€ทโˆ’1๐‘–,๐‘š๐‘–๎€ท||๐‘||๎€ธ๐‘ฅ(๐‘,๐‘š,๐‘ฃ)โˆ’โˆ’1๐‘–,๐‘š๐‘–โˆ’๎€ท๐‘ฃ(๐‘š)โˆ’ฮ›๐‘–,๐‘š๐‘–๎€ธ+๎€ท(๐‘,๐‘š,๐‘ฃ)๐‘ฃ(๐‘š)โˆ’๐‘ฅ๐‘–,๐‘š๐‘–๎€ธ๎€ป(by1EFFofฮ›)=๐‘ฅ๐‘–,๐‘š๐‘–+||๐‘||โ‹…๐‘ก2โ‹…๎€บฮ›๐‘–,๐‘š๐‘–(๐‘,๐‘š,๐‘ฃ)โˆ’๐‘ฅ๐‘–,๐‘š๐‘–๎€ป.(3.15) Hence, for all ๐‘žโˆˆโ„•, ๎‚ต||๐‘||1โˆ’โ‹…๐‘ก2๎‚ถ๐‘ž+1๎‚ƒฮ›๐‘–,๐‘š๐‘–(๐‘,๐‘š,๐‘ฃ)โˆ’๐‘ฅ๐‘ž๐‘–,๐‘š๐‘–๎‚„=๎€บฮ›๐‘–,๐‘š๐‘–(๐‘,๐‘š,๐‘ฃ)โˆ’๐‘“๐‘–,๐‘š๐‘–(๐‘ฅ๐‘ž)๎€ป=๎‚ƒฮ›๐‘–,๐‘š๐‘–(๐‘,๐‘š,๐‘ฃ)โˆ’๐‘ฅ๐‘ž+1๐‘–,๐‘š๐‘–๎‚„.(3.16) If 0<๐‘ก<4/|๐‘|, then โˆ’1<(1โˆ’(|๐‘|โ‹…๐‘ก)/2)<1 and {๐‘ฅ๐‘ž๐‘–,๐‘š๐‘–}โˆž๐‘ž=1 converges to ฮ›๐‘–,๐‘š๐‘–(๐‘,๐‘š,๐‘ฃ).
To prove (2), by 1 of this theorem, if 0<๐‘ก<4/|๐‘|, then for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š and for all ๐‘ฅโˆˆ๐‘‹1(๐‘,(๐‘š๐‘โงต{๐‘–},๐‘˜๐‘–),๐‘ฃ), {๐‘ฅ๐‘ž๐‘–,๐‘˜๐‘–}โˆž๐‘ž=1 converges to ฮ›๐‘–,๐‘˜๐‘–(๐‘,(๐‘š๐‘โงต{๐‘–},๐‘˜๐‘–),๐‘ฃ). By IIE of ฮ›, {๐‘ฅ๐‘ž๐‘–,๐‘˜๐‘–}โˆž๐‘ž=1 converges to ฮ›๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ).

Remark 3.3. Huang et al. [15] provided dynamic processes for the P&Z Shapley value as follows. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and ๐‘ฆโˆˆ๐‘‹2(๐‘,๐‘š,v). Define ๐‘ฆ0=๐‘ฆ,๐‘ฆ1=(โ„Ž๐‘–,๐‘˜๐‘–(๐‘ฆ0))(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š,โ€ฆ,๐‘ฆ๐‘ž=(โ„Ž๐‘–,๐‘˜๐‘–(๐‘ฆ๐‘žโˆ’1))(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š for all ๐‘žโˆˆโ„•.
(1)If 0<๐›ผ<4/|๐‘|, then for all ๐‘–โˆˆ๐‘ and for all ๐‘ฆโˆˆ๐‘‹2(๐‘,๐‘š,๐‘ฃ), {โˆ‘๐‘š๐‘–๐‘˜๐‘–=1๐‘ฆ๐‘ž๐‘–,๐‘˜๐‘–}โˆž๐‘ž=1 converges to โˆ‘๐‘š๐‘–๐‘˜๐‘–=1ฮ“๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ).(2)If 0<๐‘ก<4/|๐‘|, then for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š and for all ๐‘ฆโˆˆ๐‘‹2(๐‘,(๐‘š๐‘โงต{๐‘–},๐‘˜๐‘–),๐‘ฃ), {โˆ‘๐‘˜๐‘–๐‘ก๐‘–=1๐‘ฆ๐‘ž๐‘–,๐‘ก๐‘–}โˆž๐‘ž=1 converges to โˆ‘๐‘˜๐‘–๐‘ก๐‘–=1ฮ“๐‘–,๐‘ก๐‘–(๐‘,๐‘š,๐‘ฃ).(3)If 0<๐›ผ<4/|๐‘|, then for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š and for all payoff vectors ๐‘ฆ with ๐‘ฆ๐‘–,๐‘˜๐‘–=๐‘ฃ(๐‘š๐‘โงต{๐‘–},๐‘˜๐‘–)โˆ’๐‘ฃ(๐‘š๐‘โงต{๐‘–},๐‘˜๐‘–โˆ’1), {๐‘ฆ๐‘ž๐‘–,๐‘˜๐‘–}โˆž๐‘ž=1 converges to ฮ“๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ).
In fact, the proofs of (1), (2), and (3) are similar to Theorem 3.2.

Theorem 3.4. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and ๐‘งโˆˆ๐‘‹2(๐‘,๐‘š,๐‘ฃ). Define ๐‘ง0=๐‘ง,๐‘ง1=(๐‘”๐‘–,๐‘˜๐‘–(๐‘ง0))(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š,โ€ฆ,๐‘ง๐‘ž=(๐‘”๐‘–,๐‘˜๐‘–(๐‘ง๐‘žโˆ’1))(๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š for all ๐‘žโˆˆโ„•.
(1)If 0<๐›ผ<4/|๐‘|, then for all ๐‘–โˆˆ๐‘ and for all ๐‘งโˆˆ๐‘‹2(๐‘,๐‘š,๐‘ฃ), {โˆ‘๐‘š๐‘–๐‘˜๐‘–=1๐‘ง๐‘ž๐‘–,๐‘˜๐‘–}โˆž๐‘ž=1 converges to โˆ‘๐‘š๐‘–๐‘˜๐‘–=1ฮ˜๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ).(2)If 0<๐‘ก<4/|๐‘|, then for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š and for all ๐‘งโˆˆ๐‘‹2(๐‘,(๐‘š๐‘โงต{๐‘–},๐‘˜๐‘–),๐‘ฃ), {โˆ‘๐‘˜๐‘–๐‘ก๐‘–=1๐‘ง๐‘ž๐‘–,๐‘ก๐‘–}โˆž๐‘ž=1 converges to โˆ‘๐‘˜๐‘–๐‘ก๐‘–=1ฮ˜๐‘–,๐‘ก๐‘–(๐‘,๐‘š,๐‘ฃ).(3)If 0<๐›ผ<4/|๐‘|, then for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘,๐‘š and for all payoff vectors ๐‘ง with ๐‘ง๐‘–,๐‘˜๐‘–=๐‘ฃ(๐‘š๐‘โงต{๐‘–},๐‘˜๐‘–)โˆ’๐‘ฃ(๐‘š๐‘โงต{๐‘–},๐‘˜๐‘–โˆ’1), {๐‘ง๐‘ž๐‘–,๐‘˜๐‘–}โˆž๐‘ž=1 converges to ฮ˜๐‘–,๐‘˜๐‘–(๐‘,๐‘š,๐‘ฃ).

Proof. โ€œELโ€ instead of โ€œIIEโ€, the proofs of this theorem are immediate analogues Theorem 3.2 and Remark 3.3, hence we omit them.

By reducing the number of the players, Hwang and Liao [8โ€“10] proposed 1-reduction and 2-reduction on multichoice games. Here we define two types of player-action reduced games by reducing both the number of the players and the activity levels. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, ๐‘†โŠ†๐‘โงต{โˆ…}, ๐œ“ be a solution and ๐›พโˆˆ๐‘€+๐‘โงต๐‘†. (i)The 1-player-action reduced game (๐‘†,๐‘š๐‘†,๐‘ฃ1,๐œ“๐‘†,๐›พ) with respect to ๐‘†, ๐›พ and ๐œ“ is defined as for all ๐›ผโˆˆ๐‘€๐‘†, ๐‘ฃ1,๐œ“๐‘†,๐›พ(๎“๐›ผ)=๐‘ฃ(๐›ผ,๐›พ)โˆ’๐‘—โˆˆ๐‘โงต๐‘†๐œ“๐‘—,๐›พ๐‘—(๐‘,(๐›ผ,๐›พ),๐‘ฃ).(4.1)(ii)The 2-player-action reduced game (๐‘†,๐‘š๐‘†,๐‘ฃ2,๐œ“๐‘†,๐›พ) with respect to ๐‘†, ๐›พ and ๐œ“ is defined as for all ๐›ผโˆˆ๐‘€๐‘†, ๐‘ฃ2,๐œ“๐‘†,๐›พ๎“(๐›ผ)=๐‘ฃ(๐›ผ,๐›พ)โˆ’๐›พ๐‘—โˆˆ๐‘โงต๐‘†๐‘—๎“๐‘˜๐‘—=1๐œ“๐‘—,๐‘˜๐‘—(๐‘,(๐›ผ,๐›พ),๐‘ฃ).(4.2)

The player-action reduced games are based on the idea that, when renegotiating the payoff distribution within ๐‘†, the condition ๐›พโˆˆ๐‘€+๐‘โงต๐‘† means that the members of ๐‘โงต๐‘† continue to cooperate with the members of ๐‘†. All members in ๐‘โงต๐‘† take nonzero levels based on the participation vector ๐›พ to cooperate. Then in the player-action reduced games, the coalition ๐‘† with activity level ๐›ผ cooperates with all the members of ๐‘โงต๐‘† with activity level ๐›พ.

Definition 4.1. Let ๐œ“ be a solution on ๐‘€๐ถ. (i)๐œ“ satisfies 1-player-action consistency (1PACON) if for all (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, for all ๐‘†โŠ†๐‘โงต{โˆ…}, for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘†,๐‘š๐‘† and for all ๐›พโˆˆ๐‘€+๐‘โงต๐‘†, ๐œ“๐‘–,๐‘˜๐‘–(๐‘,(๐‘š๐‘†,๐›พ),๐‘ฃ)=๐œ“๐‘–,๐‘˜๐‘–(๐‘†,๐‘š๐‘†,๐‘ฃ1,๐œ“๐‘†,๐›พ). (ii)๐œ“ satisfies 2-player-action consistency (2PACON) if for all (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, for all ๐‘†โŠ†๐‘โงต{โˆ…}, for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘†,๐‘š๐‘† and for all ๐›พโˆˆ๐‘€+๐‘โงต๐‘†, ๐œ“๐‘–,๐‘˜๐‘–(๐‘,(๐‘š๐‘†,๐›พ),๐‘ฃ)=๐œ“๐‘–,๐‘˜๐‘–(๐‘†,๐‘š๐‘†,๐‘ฃ2,๐œ“๐‘†,๐›พ).

Remark 4.2. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, ๐‘†โŠ†๐‘โงต{โˆ…} and ๐œ“ be a solution. Let ๐›พ=๐‘š๐‘โงต๐‘†, by definitions of reduced games and player-action reduced games, ๐‘ฃ1,๐œ“๐‘†,๐‘š๐‘โงต๐‘†=๐‘ฃ๐œ“1,๐‘† and ๐‘ฃ2,๐œ“๐‘†,๐‘š๐‘โงต๐‘†=๐‘ฃ๐œ“2,๐‘†. Clearly, if a solution satisfies 1PACON, then it also satisfies 1CON. Similarly, if a solution satisfies 2PACON, then it also satisfies 2CON.

As we knew, each (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ can be expressed as a linear combination of minimal effort games and this decomposition exists uniquely. The following lemmas point out the relations of coefficients of expressions among (๐‘,๐‘š,๐‘ฃ), (๐‘†,๐‘š๐‘†,๐‘ฃ1,ฮ›๐‘†,๐›พ), (๐‘†,๐‘š๐‘†,๐‘ฃ2,ฮ“๐‘†,๐›พ), and (๐‘†,๐‘š๐‘†,๐‘ฃ2,ฮ˜๐‘†,๐›พ).

Lemma 4.3. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, (๐‘†,๐‘š๐‘†,๐‘ฃ1,ฮ›๐‘†,๐›พ) be a 1-player-action reduced game of ๐‘ฃ with respect to ๐‘†, ๐›พ, and the solution ฮ› and let (๐‘†,๐‘š๐‘†,๐‘ฃ2,ฮ“๐‘†,๐›พ) be a 2-player-action reduced game of ๐‘ฃ with respect to ๐‘†, ๐›พ and the solution ฮ“. If โˆ‘๐‘ฃ=๐›ผโˆˆ๐‘€๐‘โงต{0๐‘}๐‘Ž๐›ผ(๐‘ฃ)โ‹…๐‘ข๐›ผ๐‘, then ๐‘ฃ1,ฮ›๐‘†,๐›พ can be expressed as ๐‘ฃ1,ฮ›๐‘†,๐›พ=๐‘ฃ2,ฮ“๐‘†,๐›พ=โˆ‘๐›ผโˆˆ๐‘€๐‘†โงต{0๐‘†}๐‘Ž๐›ผ(๐‘ฃ2,ฮ“๐‘†,๐›พ)โ‹…๐‘ข๐›ผ๐‘†, where for all ๐›ผโˆˆ๐‘€๐‘†, ๐‘Ž๐›ผ๎‚€๐‘ฃ1,ฮ›๐‘†,๐›พ๎‚=๐‘Ž๐›ผ๎‚€๐‘ฃ2,ฮ“๐‘†,๐›พ๎‚=๎“๐œ†โ‰ค๐›พ||||๐‘†(๐›ผ)||||+||||๐‘†(๐›ผ)๐‘†(๐œ†)โ‹…๐‘Ž(๐›ผ,๐œ†)(๐‘ฃ).(4.3)

Proof. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, ๐‘†โŠ†๐‘ with ๐‘†โ‰ โˆ… and ๐›พโˆˆ๐‘€+๐‘โงต๐‘†. For all ๐›ผโˆˆ๐‘€๐‘†, ๐‘ฃ2,ฮ“๐‘†,๐›พ๎“(๐›ผ)=๐‘ฃ(๐›ผ,๐›พ)โˆ’๐›พ๐‘—โˆˆ๐‘โงต๐‘†๐‘—๎“๐‘˜๐‘—=1ฮ“๐‘—,๐‘˜๐‘—(๐‘,(๐›ผ,๐›พ),๐‘ฃ).(4.4) By 2EFF of ฮ“, ๐‘ฃ2,ฮ“๐‘†,๐›พ(0๐‘†)=0. For all ๐›ผโˆˆ๐‘€๐‘† with ๐›ผโ‰ 0๐‘†, ๎“(4.2)=๐›ผ๐‘—โˆˆ๐‘†(๐›ผ)๐‘—๎“๐‘˜๐‘—=1ฮ“๐‘—,๐‘˜๐‘—=๎“(๐‘,(๐›ผ,๐›พ),๐‘ฃ)๐›ผ๐‘—โˆˆ๐‘†(๐›ผ)๐‘—๎“๐‘˜๐‘—=1๎“๐›ฝ๐›ฝโ‰ค(๐›ผ,๐›พ)๐‘—=๐‘˜๐‘—๐‘Ž๐›ฝ(๐‘ฃ)||||=๎“๐‘†(๐›ฝ)๐‘—โˆˆ๐‘†(๐›ผ)โŽกโŽขโŽขโŽขโŽขโŽฃ๎“๐›ฝ๐›ฝโ‰ค(๐›ผ,๐›พ)๐‘—=1๐‘Ž๐›ฝ(๐‘ฃ)||||๎“๐‘†(๐›ฝ)+โ‹ฏ+๐›ฝ๐›ฝโ‰ค(๐›ผ,๐›พ)๐‘—=๐›ผ๐‘—๐‘Ž๐›ฝ(๐‘ฃ)||||โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ=๎“๐‘†(๐›ฝ)๐‘—โˆˆ๐‘†(๐›ผ)โŽกโŽขโŽขโŽขโŽขโŽฃ๎“๐œ‚๐œ‚โ‰ค๐›ผ๐‘—=1๎“๐œ†โ‰ค๐›พ๐‘Ž(๐œ‚,๐œ†)(๐‘ฃ)||๐‘†||+||๐‘†||๎“(๐œ‚)(๐œ†)+โ‹ฏ+๐œ‚๐œ‚โ‰ค๐›ผ๐‘—=๐›ผ๐‘—๎“๐œ†โ‰ค๐›พ๐‘Ž(๐œ‚,๐œ†)(๐‘ฃ)||๐‘†||+||๐‘†||โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ=๎“(๐œ‚)(๐œ†)๐œ‚โ‰ค๐›ผ๎“๐œ†โ‰ค๐›พ||||๐‘†(๐œ‚)||๐‘†||+||๐‘†||(๐œ‚)(๐œ†)โ‹…๐‘Ž(๐œ‚,๐œ†)(๐‘ฃ).(4.5) Set ๐‘Ž๐œ‚๎‚€๐‘ฃ2,ฮ“๐‘†,๐›พ๎‚=๎“๐œ†โ‰ค๐›พ||||๐‘†(๐œ‚)||||+||||๐‘†(๐œ‚)๐‘†(๐œ†)โ‹…๐‘Ž(๐œ‚,๐œ†)(๐‘ฃ).(4.6) By (4.5), for all ๐›ผโˆˆ๐‘€๐‘†, ๐‘ฃ2,ฮ“๐‘†,๐›พ๎“(๐›ผ)=๐œ‚โ‰ค๐›ผ๎“๐œ†โ‰ค๐›พ||||๐‘†(๐œ‚)||||+||||๐‘†(๐œ‚)๐‘†(๐œ†)โ‹…๐‘Ž(๐œ‚,๐œ†)๎“(๐‘ฃ)=๐œ‚โ‰ค๐›ผ๐‘Ž๐œ‚๎‚€๐‘ฃ2,ฮ“๐‘†,๐›พ๎‚.(4.7) Hence ๐‘ฃ2,ฮ“๐‘†,๐›พ can be expressed to be ๐‘ฃ2,ฮ“๐‘†,๐›พ=โˆ‘๐›ผโˆˆ๐‘€๐‘†โงต{0๐‘†}๐‘Ž๐›ผ(๐‘ฃ1,ฮ“๐‘†,๐›พ)โ‹…๐‘ข๐›ผ๐‘†. By Definition 2.1 and the definitions of ๐‘ฃ1,ฮ›๐‘†,๐›พ and ๐‘ฃ2,ฮ“๐‘†,๐›พ, for all ๐›ผโˆˆ๐‘€๐‘, ๐‘ฃ2,ฮ“๐‘†,๐›พ๎“(๐›ผ)=๐‘ฃ(๐›ผ,๐›พ)โˆ’๐›พ๐‘—โˆˆ๐‘โงต๐‘†๐‘—๎“๐‘˜๐‘—=1ฮ“๐‘—,๐‘˜๐‘—๎“(๐‘,(๐›ผ,๐›พ),๐‘ฃ)=๐‘ฃ(๐›ผ,๐›พ)โˆ’๐‘—โˆˆ๐‘โงต๐‘†ฮ›๐‘—,๐›พ๐‘—(๐‘,(๐›ผ,๐›พ),๐‘ฃ)=๐‘ฃ1,ฮ›๐‘†,๐›พ(๐›ผ).(4.8) Hence, for each ๐›ผโˆˆ๐‘€๐‘†, ๐‘ฃ1,ฮ›๐‘†,๐›พ(๐›ผ)=๐‘ฃ2,ฮ“๐‘†,๐›พ(๐›ผ) and ๐‘Ž๐›ผ(๐‘ฃ1,ฮ›๐‘†,๐›พ)=๐‘Ž๐›ผ(๐‘ฃ2,ฮ“๐‘†,๐›พ).

Lemma 4.4. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ and (๐‘†,๐‘š๐‘†,๐‘ฃ2,ฮ˜๐‘†,๐›พ) be a 2-player-action reduced game of ๐‘ฃ with respect to ๐‘†, ๐›พ, and the solution ฮ˜. If โˆ‘๐‘ฃ=๐›ผโˆˆ๐‘€๐‘โงต{0๐‘}๐‘Ž๐›ผ(๐‘ฃ)โ‹…๐‘ข๐›ผ๐‘, then ๐‘ฃ2,ฮ˜๐‘†,๐›พ can be expressed to be ๐‘ฃ2,ฮ˜๐‘†,๐›พ=โˆ‘๐›ผโˆˆ๐‘€๐‘†โงต{0๐‘†}๐‘Ž๐›ผ(๐‘ฃ2,ฮ˜๐‘†,๐›พ)โ‹…๐‘ข๐›ผ๐‘†, where for all ๐›ผโˆˆ๐‘€๐‘†, ๐‘Ž๐›ผ๎‚€๐‘ฃ2,ฮ˜๐‘†,๐›พ๎‚=๎“๐œ†โ‰ค๐›พโ€–๐›ผโ€–โ€–๐›ผโ€–+โ€–๐œ†โ€–โ‹…๐‘Ž(๐›ผ,๐œ†)(๐‘ฃ).(4.9)

Proof. The proof is similar to Lemma 4.3; hence, we omit it.

By applying Lemmas 4.3 and 4.4, we show that the three extended Shapley values satisfy related properties of player-action consistency.

Proposition 4.5. The solution ฮ› satisfies 1PACON. The solutions ฮ“ and ฮ˜ satisfy 2PACON.

Proof. Let (๐‘,๐‘š,๐‘ฃ)โˆˆ๐‘€๐ถ, ๐‘†โŠ†๐‘ with ๐‘†โ‰ โˆ… and ๐›พโˆˆ๐‘€+๐‘โงต๐‘†. First, we show that the solution ฮ› satisfies 1PACON. By Definition 2.1 and Lemma 4.3, for all (๐‘–,๐‘˜๐‘–)โˆˆ๐ฟ๐‘†,๐‘š๐‘†, ฮ›๐‘–,๐‘˜๐‘–๎‚€๐‘†,๐‘š๐‘†,๐‘ฃ1,ฮ›๐‘†,๐›พ๎‚=๎“๐›ผโˆˆ๐‘€๐‘†๐›ผ๐‘–โ‰ค๐‘˜๐‘–๐‘Ž๐›ผ๎‚€๐‘ฃ1,ฮ›๐‘†,๐›พ๎‚||||=๎“๐‘†(๐›ผ)๐›ผโˆˆ๐‘€๐‘†๐›ผ๐‘–โ‰ค๐‘˜๐‘–1||||โ‹…๎“๐‘†(๐›ผ)๐œ†โ‰ค๐›พ||๐‘†||(๐›ผ)||||+||||๐‘†(๐›ผ)๐‘†(๐œ†)โ‹…๐‘Ž(๐›ผ,๐œ†)=๎“(๐‘ฃ)๐›ฝโ‰ค(๐‘š๐‘†๐›ฝ,๐›พ)๐‘–โ‰ค๐‘˜๐‘–๐‘Ž๐›ฝ(๐‘ฃ)||||๐‘†(๐›ฝ)=ฮ›๐‘–,๐‘˜๐‘–๎€ท๎€ท๐‘š๐‘,๐‘†๎€ธ๎€ธ.,๐›พ,๐‘ฃ(4.10) Hence, the solution ฮ› satisfies 1PACON. Similarly, by Definition 2.1, Lemmas 4.3, 4.4 and previous proof, we can show that the solutions ฮ˜ and ฮ“ satisfy 2PACON.

Hwang and Liao [8โ€“10] characterized the three extended Shapley values by means of 1CON and 2CON. By Proposition 4.5 and Remarks 3.1 and 4.2, it is easy to check that 1CON and 2CON could be replaced by 1PACON and 2PACON in axiomatizations proposed by Hwang and Liao [8โ€“10].

Acknowledgment

The author is very grateful to the editor, the associate editor, and the referees who proposed very helpful suggestions and comments to improve the paper.