Table of Contents Author Guidelines Submit a Manuscript
Advances in Orthopedics
Volume 2012, Article ID 424268, 7 pages
http://dx.doi.org/10.1155/2012/424268
Review Article

Pedicle Screw-Based Posterior Dynamic Stabilization: Literature Review

1Department of Orthopedics, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
2Department of Orthopaedic Surgery, Beaumont Hospital, Oakland University William Beaumont School of Medicine, 3535 West 13 Mile Road, Royal Oak, MI 48073, USA

Received 16 August 2012; Accepted 30 October 2012

Academic Editor: Allen L. Carl

Copyright © 2012 Dilip K. Sengupta and Harry N. Herkowitz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. K. Segupta, “Posterior dynamic stabilization,” in Rothman Simeone The Spine, H. N. Herkowitz, S. R. Garfin, F. J. Eismont, G. R. Bell, and R. A. Balderston, Eds., Elsevier, New York, NY, USA, 2011. View at Google Scholar
  2. C. M. Bono and C. K. Lee, “Critical analysis of trends in fusion for degenerative disc disease over the past 20 years: influence of technique on fusion rate and clinical outcome,” Spine, vol. 29, no. 4, pp. 455–463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. N. Gibson and G. Waddell, “Surgery for degenerative lumbar spondylosis,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD001352, 2005. View at Google Scholar · View at Scopus
  4. M. H. Pope and M. Panjabi, “Biomechanical definitions of spinal instability,” Spine, vol. 10, no. 3, pp. 255–256, 1985. View at Google Scholar · View at Scopus
  5. D. K. Sengupta and H. N. Herkowitz, “Degenerative spondylolisthesis: review of current trends and controversies,” Spine, vol. 30, no. 6, supplement, pp. S71–S81, 2005. View at Google Scholar · View at Scopus
  6. A. Okawa, K. Shinomiya, H. Komori, T. Muneta, Y. Arai, and O. Nakai, “Dynamic motion study of the whole lumbar spine by videofluoroscopy,” Spine, vol. 23, no. 16, pp. 1743–1749, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Murata, Y. Morio, and K. Kuranobu, “Lumbar disc degeneration and segmental instability: a comparison of magnetic resonance images and plain radiographs of patients with low back pain,” Archives of Orthopaedic and Trauma Surgery, vol. 113, no. 6, pp. 297–301, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Paajanen and M. Tertti, “Association of incipient disc degeneration and instability in spondylolisthesis. A magnetic resonance and flexion-extension radiographic study of 20-year-old low back pain patients,” Archives of Orthopaedic and Trauma Surgery, vol. 111, no. 1, pp. 16–19, 1991. View at Google Scholar · View at Scopus
  9. A. Fujiwara, K. Tamai, H. S. An et al., “The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine,” Journal of Spinal Disorders, vol. 13, no. 5, pp. 444–450, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Panjabi, “Clinical spinal instability and low back pain,” Journal of Electromyography and Kinesiology, vol. 13, no. 4, pp. 371–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Mulholland and D. K. Sengupta, “Rationale, principles and experimental evaluation of the concept of soft stabilization,” European Spine Journal, vol. 11, supplement 2, pp. S198–S205, 2002. View at Google Scholar · View at Scopus
  12. J. W. Frymoyer, M. H. Krag et al., “Spinal stability and instability: definitions, classification, and general principles of management,” in The Unstable Spine, S. B. Dunsker, H. Schmidek, J. Frymoyer, and J. Kahn, Eds., Grune & Stratton, New York, NY, USA, 1986. View at Google Scholar
  13. D. S. McNally, “The objectives for the mechanical evaluation of spinal instrumentation have changed,” European Spine Journal, no. 11, supplement 2, pp. S179–S185, 2002. View at Google Scholar
  14. D. S. McNally and M. A. Adams, “Internal intervertebral disc mechanics as revealed by stress profilometry,” Spine, vol. 17, no. 1, pp. 66–73, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. D. S. McNally, I. M. Shackleford, A. E. Goodship, and R. C. Mulholland, “In vivo stress measurement can predict pain on discography,” Spine, vol. 21, no. 22, pp. 2580–2587, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. R. P. Nockels, “Dynamic stabilization in the surgical management of painful lumbar spinal disorders,” Spine, vol. 30, no. 16, supplement, pp. S68–S72, 2005. View at Google Scholar · View at Scopus
  17. H. Graf, “Lumbar instability. Surgical treatment without Fusion,” Rachis, vol. 412, pp. 123–137, 1992. View at Google Scholar
  18. S. V. Hadlow, A. B. Fagan, T. M. Hillier, and R. D. Fraser, “The graft ligamentoplasty procedure: comparison with posterolateral fusion in the management of low back pain,” Spine, vol. 23, no. 10, pp. 1172–1179, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. M. P. Grevitt, A. D. H. Gardner, J. Spilsbury et al., “The Graf stabilisation system: early results in 50 patients,” European Spine Journal, vol. 4, no. 3, pp. 169–175, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Gardner and K. C. Pande, “Graf ligamentoplasty: a 7-year follow-up,” European Spine Journal, vol. 11, no. 2, supplement, pp. S157–S163, 2002. View at Google Scholar · View at Scopus
  21. T. M. Markwalder and M. Wenger, “Dynamic stabilization of lumbar motion segments by use of Graf's ligaments: results with an average follow-up of 7.4 years in 39 highly selected, consecutive patients,” Acta Neurochirurgica, vol. 145, no. 3, pp. 209–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kanayama, T. Hashimoto, K. Shigenobu, D. Togawa, and F. Oha, “A minimum 10-year follow-up of posterior dynamic stabilization using graf artificial ligament,” Spine, vol. 32, no. 18, pp. 1992–1996, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Grob, A. Benini, A. Junge, and A. F. Mannion, “Clinical experience with the dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years,” Spine, vol. 30, no. 3, pp. 324–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. T. M. Stoll, G. Dubois, and O. Schwarzenbach, “The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system,” European Spine Journal, vol. 11, no. 2, supplement, pp. S170–S178, 2002. View at Google Scholar · View at Scopus
  25. W. Schmoelz, J. F. Huber, T. Nydegger, Dipl-Ing, L. Claes, and H. J. Wilke, “Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment,” Journal of Spinal Disorders and Techniques, vol. 16, no. 4, pp. 418–423, 2003. View at Google Scholar · View at Scopus
  26. W. Schmoelz, J. F. Huber, T. Nydegger, L. Claes, and H. J. Wilke, “Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure,” European Spine Journal, vol. 15, no. 8, pp. 1276–1285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Beastall, E. Karadimas, M. Siddiqui et al., “The dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings,” Spine, vol. 32, no. 6, pp. 685–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. S. Sapkas, G. S. Themistocleous, A. F. Mavrogenis, I. S. Benetos, N. Metaxas, and P. J. Papagelopoulos, “Stabilization of the lumbar spine using the dynamic neutralization system,” Orthopedics, vol. 30, no. 10, pp. 859–865, 2007. View at Google Scholar · View at Scopus
  29. C. C. Würgler-Hauri, A. Kalbarczyk, M. Wiesli, H. Landolt, and J. Fandino, “Dynamic neutralization of the lumbar spine after microsurgical decompression in acquired lumbar spinal stenosis and segmental instability,” Spine, vol. 33, no. 3, pp. E66–E72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. W. C. Welch, B. C. Cheng, T. E. Awad et al., “Clinical outcomes of the Dynesys dynamic neutralization system: 1-year preliminary results,” Neurosurgical Focus, vol. 22, no. 1, p. E8, 2007. View at Google Scholar · View at Scopus
  31. FDA.gov, FDA Executive Summary for Zimmer Spine’s Dynesys Spinal System, 2009, http://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/medicaldevices/medicaldevicesadvisorycommittee/orthopaedicandrehabilitationdevicespanel/ucm188734.pdf.
  32. NICE, Non-rigid stabilisation techniques for the treatment of low back pain—Consultation Document, 2009.
  33. Y. S. Kim and Y. S. M. B, “Bioflex spring rod pedicle screw system,” in Dynamic Reconstruction of the Spine, C. F. J. Kim DH and R. G. Fessler, Eds., pp. 340–346, Thieme, New York, NY, USA, 2006. View at Google Scholar
  34. Y. S. Kim, H. Y. Zhang, B. J. Moon et al., “Nitinol spring rod dynamic stabilization system and Nitinol memory loops in surgical treatment for lumbar disc disorders: short-term follow up,” Neurosurgical Focus, vol. 22, no. 1, p. E10, 2007. View at Google Scholar · View at Scopus
  35. J. J. Yue, J. P. Timm, M. M. Panjabi, and J. Jaramillo-de la Torre, “Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system,” Neurosurgical Focus, vol. 22, no. 1, p. E12, 2007. View at Google Scholar · View at Scopus
  36. J. J. Yue, G. Malcolmon, and J. P. Timm, “The stabilimax NZ posterior lumbar dynamic stabilization system,” in Motion Preservation Surgery of the Spine—Advanced Techniques and Controversies, B. R. Yue, P. C. McAfee, and H. S. An, Eds., pp. 476–482, Saunders Elsevier, Philadelphia, Pa, USA, 2008. View at Google Scholar
  37. H. S. Karabekir, C. Sedat, and Z. Mehmet, “Clinical outcomes of cosmic dynamic neutralization system: preliminary results pf 1-year,” The Internet Journal of Minimally Invasive Spinal Technology, vol. 2, no. 3, 2008. View at Google Scholar
  38. T. Kaner, S. Dalbayrak, T. Oktenoglu, M. Sasani, A. L. Aydin, and F. O. Ozer, “Comparison of posterior dynamic and posterior rigid transpedicular stabilization with fusion to treat degenerative spondylolisthesis,” Orthopedics, vol. 33, no. 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Kaner, M. Sasani, T. Oktenoglu et al., “Minimum two-year follow-up of cases with recurrent disc herniation treated with microdiscectomy and posterior dynamic transpedicular stabilisation,” The Open Orthopaedics Journal, vol. 4, pp. 120–125, 2010. View at Publisher · View at Google Scholar
  40. E. Hoff, P. Strube, A. Rohlmann, C. Gross, and M. Putzier, “Which radiographic parameters are linked to failure of a dynamic spinal implant?” Clinical Orthopaedics and Related Research, vol. 470, no. 7, pp. 1834–1846, 2012. View at Google Scholar
  41. C. J. Wallach, A. L. Teng, and J. C. Wang, “NFlex,” in Motion Preservation Surgery of the Spine—Advanced Techniques and Controversies, B. R. Yue, P. C. McAfee, and H. S. An, Eds., pp. 505–510, Saunders Elsevier, Philadelphia, Pa, USA, 2008. View at Google Scholar
  42. P. Mageswaran, F. Techy, R. W. Colbrunn, T. F. Bonner, and R. F. McLain, “Hybrid dynamic stabilization: a biomechanical assessment of adjacent and supraadjacent levels of the lumbar spine,” Journal of Neurosurgery. Spine, vol. 17, no. 3, pp. 232–242, 2012. View at Publisher · View at Google Scholar