Table of Contents Author Guidelines Submit a Manuscript
Advances in Orthopedics
Volume 2013, Article ID 451956, 6 pages
http://dx.doi.org/10.1155/2013/451956
Review Article

Biomechanics of Posterior Dynamic Stabilization Systems

1Department of Neurosurgery, School of Medicine, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
2Department of Mechanical Engineering, Colleges of Engineering, Koc University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
3Departments of Bioengineering and Orthopaedic Surgery, Engineering Center for Orthopaedic Research Excellence (E-CORE), Colleges of Engineering and Medicine, University of Toledo, Toledo, OH 43606, USA

Received 30 November 2012; Accepted 21 February 2013

Academic Editor: Tunc Oktenoglu

Copyright © 2013 D. U. Erbulut et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. White III and M. M. Panjabi, Clinical Biomechanics of the Spine, Lippincott-Raven, 1990.
  2. Q. H. Zhang and E. C. Teo, “Finite element application in implant research for treatment of lumbar degenerative disc disease,” Medical Engineering and Physics, vol. 30, no. 10, pp. 1246–1256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Schwarzenbach, U. Berlemann, T. M. Stoll, and G. Dubois, “Posterior dynamic stabilization systems: DYNESYS,” Orthopedic Clinics of North America, vol. 36, no. 3, pp. 363–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Niosi, Q. A. Zhu, D. C. Wilson, O. Keynan, D. R. Wilson, and T. R. Oxland, “Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study,” European Spine Journal, vol. 15, no. 6, pp. 913–922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. N. Sangiorgio, H. Sheikh, S. L. Borkowski, L. Khoo, C. R. Warren, and E. Ebramzadeh, “Comparison of three posterior dynamic stabilization devices,” Spine, vol. 36, no. 19, pp. E1251–E1258, 2011. View at Google Scholar
  6. R. W. Molinari, “Dynamic stabilization of the lumbar spine,” Current Opinion in Orthopaedics, vol. 18, no. 3, pp. 215–220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. V. K. Goel, M. M. Panjabi, A. G. Patwardhan, A. P. Dooris, and H. Serhan, “Test protocols for evaluation of spinal implants,” Journal of Bone and Joint Surgery A, vol. 88, no. 2, pp. 103–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Dubois, B. De Germay, N. S. Schaerer, and P. Fennema, “Dynamic neutralization: a new concept for restabilization of the spine,” in Lumbar Segmental Instability, M. Szpalski, R. Gunzburg, and M. H. Pope, Eds., pp. 233–240, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 1999. View at Google Scholar
  9. A. Rohlmann, N. K. Burra, T. Zander, and G. Bergmann, “Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis,” European Spine Journal, vol. 16, no. 8, pp. 1223–1231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Schmoelz, J. F. Huber, T. Nydegger, Dipl-Ing, L. Claes, and H. J. Wilke, “Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment,” Journal of Spinal Disorders and Techniques, vol. 16, no. 4, pp. 418–423, 2003. View at Google Scholar · View at Scopus
  11. W. Schmoelz, J. F. Huber, T. Nydegger, L. Claes, and H. J. Wilke, “Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure,” European Spine Journal, vol. 15, no. 8, pp. 1276–1285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Beastall, E. Karadimas, M. Siddiqui et al., “The dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings,” Spine, vol. 32, no. 6, pp. 685–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Schmidt, F. Heuer, and H. J. Wilke, “Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system?” Journal of Biomechanics, vol. 42, no. 1, pp. 48–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. L. Schulte, C. Hurschler, M. Haversath et al., “The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression,” European Spine Journal, vol. 17, no. 8, pp. 1057–1065, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. J. Wilke, F. Heuer, and H. Schmidt, “Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system,” Spine, vol. 34, no. 3, pp. 255–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Hashimoto, F. Oha, K. Shigenobu et al., “Mid-term clinical results of Graf stabilization for lumbar degenerative pathologies: a minimum 2-year follow-up,” Spine Journal, vol. 1, no. 4, pp. 283–289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kanayama, T. Hashimoto, and K. Shigenobu, “Rationale, biomechanics, and surgical indications for graf ligamentoplasty,” Orthopedic Clinics of North America, vol. 36, no. 3, pp. 373–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Stoffel, M. Behr, A. Reinke, C. Stüer, F. Ringel, and B. Meyer, “Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic-system: a prospective observation,” Acta Neurochirurgica, vol. 152, no. 5, pp. 835–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Meyers, M. Tauber, Y. Sudin et al., “Use of instrumented pedicle screws to evaluate load sharing in posterior dynamic stabilization systems,” Spine Journal, vol. 8, no. 6, pp. 926–932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ozer, N. Crawford, M. Sasani et al., “Dynamic lumbar pedicle screw-rod stabilization: two-year follow-up and comparison with fusion,” The Open Orthopeadics Journal, vol. 4, pp. 137–141, 2010. View at Google Scholar
  21. A. von Strempel, “Dynamic stabilisation: cosmic system,” Interactive Surgery, vol. 3, no. 4, pp. 229–236, 2008. View at Google Scholar
  22. Z. A. Smith, S. Armin, D. Raphael, and L. T. Khoo, “A minimally invasive technique for percutaneous lumbar facet augmentation: technical description of a novel device,” Surgical Neurology International, vol. 2, no. 165, 2011. View at Google Scholar
  23. S. Masala, U. Tarantino, G. Nano et al., “Lumbar spinal stenosis minimally invasive treatment with bilateral transpedicular facet augmentation system,” Cardiovascular and Interventional Radiology, 2012. View at Google Scholar
  24. C. E. Mandigo, P. Sampath, and M. G. Kaiser, “Posterior dynamic stabilization of the lumbar spine: pedicle based stabilization with the AccuFlex rod system,” Neurosurgical Focus, vol. 22, no. 1, article E9, 2007. View at Google Scholar · View at Scopus
  25. A. Reyes-Sánchez, B. Zárate-Kalfópulos, I. Ramírez-Mora, L. M. Rosales-Olivarez, A. Alpizar-Aguirre, and G. Sánchez-Bringas, “Posterior dynamic stabilization of the lumbar spine with the Accuflex rod system as a stand-alone device: experience in 20 patients with 2-year follow-up,” European Spine Journal, vol. 19, no. 12, pp. 2164–2170, 2010. View at Google Scholar · View at Scopus
  26. B. Y. Cho, J. Murovic, K. W. Park, and J. Park, “Lumbar disc rehydration postimplantation of a posterior dynamic stabilization system: case report,” Journal of Neurosurgery, vol. 13, no. 5, pp. 576–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. G. Kondrashov, M. Hannibal, K. Y. Hsu, and J. F. Zucherman, “Interspinous process decompression with the X-STOP device for lumbar spinal stenosis: a 4-year follow-up study,” Journal of Spinal Disorders and Techniques, vol. 19, no. 5, pp. 323–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. D. P. Lindsey, K. E. Swanson, P. Fuchs, K. Y. Hsu, J. F. Zucherman, and S. A. Yerby, “The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine,” Spine, vol. 28, no. 19, pp. 2192–2197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Siddiqui, E. Karadimas, M. Nicol, F. W. Smith, and D. Wardlaw, “Effects of X-Stop device on sagittal lumbar spine kinematics in spinal stenosis,” Journal of Spinal Disorders and Techniques, vol. 19, no. 5, pp. 328–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Richter, C. Schütz, M. Hauck, and H. Halm, “Does an interspinous device (Coflex) improve the outcome of decompressive surgery in lumbar spinal stenosis? One-year follow up of a prospective case control study of 60 patients,” European Spine Journal, vol. 19, no. 2, pp. 283–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. D. Christie, J. K. Song, and R. G. Fessler, “Dynamic interspinous process technology,” Spine, vol. 30, no. 16, pp. S73–S78, 2005. View at Google Scholar · View at Scopus
  32. J. Sénégas, “Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the wallis system,” European Spine Journal, vol. 11, no. 2, pp. S164–S169, 2002. View at Google Scholar · View at Scopus