Table of Contents Author Guidelines Submit a Manuscript
Advances in Orthopedics
Volume 2018, Article ID 1326701, 7 pages
https://doi.org/10.1155/2018/1326701
Review Article

Management of Subtrochanteric Proximal Femur Fractures: A Review of Recent Literature

Department of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH 43614-5807, USA

Correspondence should be addressed to Nabil Ebraheim; ude.odelotu@mieharbe.liban

Received 20 June 2018; Accepted 16 September 2018; Published 28 October 2018

Academic Editor: Allen L. Carl

Copyright © 2018 Christopher Jackson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Dell, A. L. Adams, D. F. Greene et al., “Incidence of atypical nontraumatic diaphyseal fractures of the femur,” Journal of Bone and Mineral Research, vol. 27, no. 12, pp. 2544–2550, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. W. Nieves, J. P. Bilezikian, J. M. Lane et al., “Fragility fractures of the hip and femur: incidence and patient characteristics,” Osteoporosis International, vol. 21, no. 3, pp. 399–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. N. Streubel, A. H. W. Wong, W. M. Ricci, and M. J. Gardner, “Is there a standard trochanteric entry site for nailing of subtrochanteric femur fractures?” Journal of Orthopaedic Trauma, vol. 25, no. 4, pp. 202–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. C. Ng, M. T. Drake, B. L. Clarke et al., “Trends in subtrochanteric, diaphyseal, and distal femur fractures, 1984-2007,” Osteoporosis International, vol. 23, no. 6, pp. 1721–1726, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Abrahamsen, P. Eiken, and R. Eastell, “Subtrochanteric and diaphyseal femur fractures in patients treated with alendronate: A register-based national cohort study,” Journal of Bone and Mineral Research, vol. 24, no. 6, pp. 1095–1102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Napoli, A. V. Schwartz, L. Palermo et al., “Risk factors for subtrochanteric and diaphyseal fractures: the study of osteoporotic fractures,” The Journal of Clinical Endocrinology & Metabolism, vol. 98, no. 2, pp. 659–667, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. C. S. Roberts, A. Nawab, M. Wang, M. J. Voor, and D. Seligson, “Second generation intramedullary nailing of subtrochanteric femur fractures: A biomechanical study of fracture site motion,” Journal of Orthopaedic Trauma, vol. 16, no. 4, pp. 231–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Koch, “The laws of bone architecture,” American Journal of Anatomy, vol. 21, no. 2, pp. 177–298, 1917. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Nordin and V. H, Basic biomechanics of the musculoskeletal system. Lippincott Williams Wilkins.n,.
  10. F. Feldman, “Atypical diaphyseal femoral fractures-new aspects,” Skeletal Radiology, vol. 41, no. 1, pp. 75–81, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Shah and M. Shah, “Functional outcomes of subtrochanteric femur fractures treated by intramedullary proximal femur nail,” International Journal of Orthopaedics, vol. 3, no. 2, pp. 876–881, 2017. View at Google Scholar
  12. D. B. Bumpass, W. M. Ricci, C. M. McAndrew, and M. J. Gardner, “A prospective study of pain reduction and knee dysfunction comparing femoral skeletal traction and splinting in adult trauma patients,” Journal of Orthopaedic Trauma, vol. 29, no. 2, pp. 112–118, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. K. V. Grigoryan, H. Javedan, and J. L. Rudolph, “Ortho-geriatric care models and outcomes in hip fracture patients: a systematic review and meta-analysis,” Journal of Orthopaedic Trauma, vol. 28, no. 3, 2014. View at Google Scholar
  14. K. J. Koval, N. Rezaie, and R. S. Yoon, “Subtrochanteric Femur Fractures,” in In Proximal Femur Fractures, pp. 101–112, Springer, Cham, 2018. View at Google Scholar
  15. R. Robertson, M. Tucker, and T. Jones, “Provisional Plating of Subtrochanteric Femur Fractures Before Intramedullary Nailing in the Lateral Decubitus Position,” Journal of Orthopaedic Trauma, vol. 32, no. 4, pp. e151–e156, 2018. View at Publisher · View at Google Scholar
  16. D. A. Wiss and W. W. Brien, “Subtrochanteric fractures of the femur: Results of treatment by interlocking nailing,” Clinical Orthopaedics and Related Research, no. 283, pp. 231–236, 1992. View at Google Scholar · View at Scopus
  17. D. Nicolaou and J. T. Watson, “Nailing proximal femur fractures: How to choose starting point and proximal screw configuration,” Journal of Orthopaedic Trauma, vol. 29, no. 4, pp. S22–S27, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. K. D. Johnson, A. F. Tencer, and M. C. Sherman, “Biomechanical factors affecting fracture stability and femoral bursting in closed intramedullary nailing of femoral shaft fractures, with illustrative case presentations,” Journal of Orthopaedic Trauma, vol. 1, no. 1, pp. 1–11, 1987. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Ansari Moein, M. H. J. Verhofstad, R. L. A. W. Bleys, and C. Van Der Werken, “Soft tissue injury related to choice of entry point in antegrade femoral nailing: Piriform fossa or greater trochanter tip,” Injury, vol. 36, no. 11, pp. 1337–1342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. R. F. Ostrum, A. Marcantonio, and R. Marburger, “A critical analysis of the eccentric starting point for trochanteric intramedullary femoral nailing,” Journal of Orthopaedic Trauma, vol. 19, no. 10, pp. 681–686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. W. Lundy, “Subtrochanteric femoral fractures,” Journal of the American Academy of OrthopaedicSurgeons , vol. 15, no. 11, pp. 663–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. S. Horner, K. Samuelsson, J. Solyom et al., “Implant- Related Complications and Mortality After Use of Short or Long Gamma Nail for Intertrochanteric and Subtrochanteric Fractures: A Prospective Study with Minimum 13-Year Follow-up,” JBJS Open Access, vol. 2, no. 3, p. e0026, 2017. View at Publisher · View at Google Scholar
  23. W. J. Kraemer, T. C. Hearn, J. N. Powell, and N. Mahomed, “Fixation of segmental subtrochanteric fractures: A biomechanical study,” Clinical Orthopaedics and Related Research, no. 332, pp. 71–79, 1996. View at Google Scholar · View at Scopus
  24. C. Kinast, B. R. Bolhofner, J. W. Mast, and R. Ganz, “Subtrochanteric fractures of the femur. Results of treatment with the 95° condylar blade-plate,” Clinical Orthopaedics and Related Research, no. 238, pp. 122–130, 1989. View at Google Scholar · View at Scopus
  25. W. W. Brien, D. A. Wiss, V. Becker, and T. Lehman, “Subtrochanteric femur fractures: A comparison of the zickel nail, 95° blade plate, and interlocking nail,” Journal of Orthopaedic Trauma, vol. 5, no. 4, pp. 458–464, 1991. View at Publisher · View at Google Scholar · View at Scopus
  26. C. A. Collinge, R. Hymes, M. Archdeacon et al., “Unstable proximal femur fractures treated with proximal femoral locking plates: A retrospective, multicenter study of 111 cases,” Journal of Orthopaedic Trauma, vol. 30, no. 9, pp. 489–495, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Kharazmi, P. Hallberg, J. Schilcher, P. Aspenberg, and K. Michaëlsson, “Mortality after atypical femoral fractures: A cohort study,” Journal of Bone and Mineral Research, vol. 31, no. 3, pp. 491–497, 2016. View at Publisher · View at Google Scholar · View at Scopus