Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2011, Article ID 823654, 8 pages
http://dx.doi.org/10.1155/2011/823654
Research Article

Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

1Department of Mechanics System Engineering, Toyama Prefectural University, Imizu 939-0398, Japan
2COSEL CO. LTD., 1-6-43 Kamiakae-machi, Toyama 930-0816, Japan

Received 12 April 2011; Revised 4 August 2011; Accepted 6 September 2011

Academic Editor: P. Markondeya Raj

Copyright © 2011 Masaru Ishizuka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. http://www.cradle.co.jp/en/index.htm.
  2. http://www.flomerics.com/.
  3. W. Nakayama, R. Matsuki, Y. Hacho, and K. Yajima, “A new role of CFD simulation in thermal design of compact electronic equipment: application of the build-up approach to thermal analysis of a benchmark model,” Journal of Electronic Packaging, Transactions of the ASME, vol. 126, no. 4, pp. 440–448, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Nakayama, T. Nakajima, H. Koike, and R. Matsuki, “Heat conduction in printed circuit boards—part I; overview and the case of a JEDEC test board,” in Proceedings of IPACK, ASME InterPACK, Vancouver, BC, Canada, July 2007.
  5. W. Nakayama, T. Nakajima, H. Koike, and R. Matsuki, “Heat conduction in printed circuit boards—part I; part ii; small PCBs connected to large thermal mass at their edge,” in Proceedings of IPACK, ASME InterPACK, Vancouver, BC, Canada, July 2007.
  6. A. Minichiello and C. Belady, “Thermal design methodology for electronic systems,” in Proceedings of the Inter Society Conference on Thermal Phenomena, San Diego Calif, USA, June 2002.
  7. C. Moosmann, E. B. Rudnyi, A. Greiner, and J. G. Korvink, “Model order reduction for linear convective thermal flow,” in Proceedings of the 10th International Workshop on Thermal Investigations of ICs and Systems, Sophia Antipolis, France, October 2004.
  8. D. D'Amore, L. Codecasa, and P. Maffezzoni, “An Arnoldi based thermal network reduction method for electro-thermal analysis,” IEEE Transactions on Components and Packaging Technologies, vol. 26, no. 1, pp. 186–192, 2003. View at Publisher · View at Google Scholar
  9. E. B. Rudnyi, T. Bechtold, and J. G. Korvink, “Automatic generation of compact electrothermal models for semiconductor devices,” IEICE Transactions on Electronics, vol. 86C, pp. 459–465, 2003. View at Google Scholar
  10. M. Molina and C. Clemente, “Thermal model reduction: algorithms and validation techniques,” SAE Technical Papers 2006-01-2112, 2006. View at Google Scholar
  11. M. Ishizuka and S. Hayama, “Application of a semi-empirical approach to the thermal design of electronic equipment,” IMechE Journal of Power and Energy, vol. 214, no. 5, pp. 513–522, 2000. View at Google Scholar · View at Scopus
  12. M. Ishizuka, S. Nakagawa, T. Hachiga, and H. Ishida, “Application of a thermal network method to non-steady thermal analysis of electronic equipment,” Far East Journal of Mathematical Sciences, vol. 28, no. 3, pp. 667–680, 2009. View at Google Scholar
  13. M. Ishizuka, S. Nakagawa, K. Koizumi, and Y. Kitamura, “Practical study of application of thermal network method to thermal design of electronic equipment (an example for thermal design of a compact self-ballasted fluorescent lamp),” Far East Journal of Applied Mathematics, vol. 26, no. 3, pp. 59–608, 2007. View at Google Scholar
  14. M. Ishizuka, “Operation time control of a high density packaging using a low melting point alloy,” IEEE Transactions on Components, Packaging Technologies, vol. 27, no. 2, pp. 239–243, 2004. View at Google Scholar
  15. S. Takakuwa, M. Ishizuka, and S. Nakagawa, “Application of a thermal network method to thermal (16)analysis of electronic devices using phase change materials,” in Proceedings of the IPACK, ASME InterPACK, San Francisco, Calif, USA, July 2009.