Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2011 (2011), Article ID 871474, 8 pages
http://dx.doi.org/10.1155/2011/871474
Research Article

Sub-Nanosecond Greater-Than-10-V Compact Tunable Pulse Generator for Low-Duty-Cycle High-Peak-Power Ultra-Wideband Applications

1Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
2Department of Electrical and Electronic Engineering, Nanyang Technology University, 50 Nanyang Avenue, Singapore 639798

Received 9 January 2011; Revised 22 May 2011; Accepted 8 June 2011

Academic Editor: Sheng Lyang Jang

Copyright © 2011 Renfeng Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

An ultra-wideband pulse generator was designed and fabricated in GaAs HBT IC technology. The generator includes delay and differential circuits to convert a TTL input into a Gaussian pulse signal as well as a Class-C amplifier to boost the pulse amplitude while compressing the pulse width. By adjusting the collector bias of the Class-C amplifier, the pulse amplitude can be varied linearly between 3.5 V and 11.5 V while maintaining the pulse width at 0.3 ± 0.1 nanosecond. Alternatively, by adjusting the base bias of the Class-C amplifier, the pulse width can be varied linearly between 0.25 ns and 0.65 ns while maintaining the pulse amplitude at 10 ± 1 V. Finally, the amplified Gaussian signal can be shaped into a monocycle signal by an L-C derivative circuit. The present pulse generator compares favorably with pulse generators fabricated in CMOS ICs, step-recovery diodes, or other discrete devices.