Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2012 (2012), Article ID 181395, 11 pages
Research Article

Novel Power Reduction Technique for ReRAM with Automatic Avoidance Circuit for Wasteful Overwrite

1School of Electrical and Computer Engineering, College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
2School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920–0942, Japan

Received 18 October 2011; Accepted 5 January 2012

Academic Editor: Daisaburo Takashima

Copyright © 2012 Takaya Handa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kawabata, M. Nakura, S. Yamazaki et al., “CoOx-RRAM memory cell technology using recess structure for 128 Kbits memory array,” in Proceedings of the IEEE International Memory Workshop (IMW'10), pp. 1–2, Seoul, Korea, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. S. Chen, H. Y. Lee, P. S. Chen et al., “Overview and future challenges of hafnium oxide ReRAM,” in Proceedings of the International Conference on Solid State Devices and Materials (SSDM'10), pp. 1106–1107, 2010.
  3. C. C. Chung, H. Lin, Y. M. Shen, and Y. T. Lin, “A multilevel sensing and program verifying scheme for Bi-NAND flash memories,” in Proceedings of the IEEE VLSI-TSA International Symposium on VLSI Design, Automation and Test (VLSI-TSA-DAT'05), pp. 267–270, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Ueda, Y. Iwata, and T. Inaba, “Design of low read bias voltage and high speed sense amplifier for STT-MRAM,” Tech. Rep., pp. 7–12, IEICE, April 2007. View at Google Scholar