Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2013, Article ID 574925, 9 pages
http://dx.doi.org/10.1155/2013/574925
Research Article

Additional High Input Low Output Impedance Analog Networks

1Department of Electronics Engineering, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
2Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida 201304, India

Received 6 June 2013; Accepted 14 August 2013

Academic Editor: Jiun-Wei Horng

Copyright © 2013 Sudhanshu Maheshwari and Bhartendu Chaturvedi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Beg, I. A. Khan, S. Maheshwari, and M. A. Siddiqi, “Digitally programmable fully differential filter,” Radioengineering, vol. 20, no. 4, pp. 917–925, 2011. View at Google Scholar · View at Scopus
  2. I. A. Khan and A. M. Nahhas, “Reconfigurable voltage mode first order multifunctional filter using single low voltage digitally controlled CMOS CCII,” International Journal of Computer Applications, vol. 45, no. 5, pp. 37–40, 2012. View at Google Scholar
  3. I. A. Khan, M. T. Simsim, and P. Beg, “Reconfigurable continuous time current mode first order multifunctional filter using low voltage digitally controlled CMOS CCII,” in Proceedings of the International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT '11), pp. 5–8, Aligarh, India, December 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Maheshwari, “Analogue signal processing applications using a new circuit topology,” IET Circuits, Devices and Systems, vol. 3, no. 3, pp. 106–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Maheshwari and B. Chaturvedi, “High-input low-output impedance all-pass filters using one active element,” IET Circuits, Devices and Systems, vol. 6, no. 2, pp. 103–110, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Maheshwari, J. Mohan, and D. S. Chauhan, “Voltage-mode cascadable all-pass sections with two grounded passive components and one active element,” IET Circuits, Devices and Systems, vol. 4, no. 2, pp. 113–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Sun, Design of High Frequency Integrated Analogue Filters, vol. 14 of IEE Circuits, Devices and Systems, Institution of Electrical Engineers, Stevenage, UK, 2002.
  8. Y. Sun, Wireless Communication Circuits and Systems, vol. 16 of IEE Circuits, Devices and Systems, Institution of Electrical Engineers, Stevenage, UK, 2004.
  9. A. M. Soliman, “Generation of current conveyor-based all-pass filters from op amp-based circuits,” IEEE Transactions on Circuits and Systems II, vol. 44, no. 4, pp. 324–330, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Tsukutani, H. Tsunetsugu, Y. Sumi, and N. Yabuki, “Electronically tunable first-order all-pass circuit employing DVCC and OTA,” International Journal of Electronics, vol. 97, no. 3, pp. 285–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Biolek and V. Biolkova, “Allpass filter employing one grounded capacitor and one active element,” Electronics Letters, vol. 45, no. 16, pp. 807–808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Biolek and V. Biolkova, “First-order voltage-mode all-pass filter employing one active element and one grounded capacitor,” Analog Integrated Circuits and Signal Processing, vol. 65, no. 1, pp. 123–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Saad and A. M. Soliman, “On the systematic synthesis of CCII-based floating simulators,” International Journal of Circuit Theory and Applications, vol. 38, no. 9, pp. 935–967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Pal, “Novel floating inductance using current conveyors,” Electronics Letters, vol. 17, no. 18, article 638, 1981. View at Publisher · View at Google Scholar · View at Scopus
  15. A. S. Sedra and K. C. Smith, “A second generation current conveyor and its applications,” IEEE Transactions on Circuit Theory, vol. 17, no. 1, pp. 132–134, 1970. View at Publisher · View at Google Scholar
  16. I. A. Khan and M. H. Zaidi, “A novel ideal floating inductor using translinear conveyors,” Active and Passive Electronic Components, vol. 26, no. 2, pp. 87–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Kacar and A. Yesil, “Novel grounded parallel inductance simulators realization using a minimum number of active and passive components,” Microelectronics Journal, vol. 41, no. 10, pp. 632–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Schaumann and M. E. Valkenburg, Design of Analog Filters, Oxford University Press, New York, NY, USA, 2005.
  19. F. Kacar, B. Metin, and H. Kuntman, “A new CMOS dual-X second generation current conveyor (DXCCII) with an FDNR circuit application,” International Journal of Electronics and Communications, vol. 64, no. 8, pp. 774–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Zeki and A. Toker, “The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters,” International Journal of Electronics, vol. 89, no. 12, pp. 913–923, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Tlelo-Cuautle, C. Sánchez-López, and D. Moro-Frías, “Symbolic analysis of (MO)(I)CCI(II)(III)-based analog circuits,” International Journal of Circuit Theory and Applications, vol. 38, no. 6, pp. 649–659, 2010. View at Publisher · View at Google Scholar · View at Scopus