Table of Contents Author Guidelines Submit a Manuscript
Active and Passive Electronic Components
Volume 2017, Article ID 5947819, 8 pages
https://doi.org/10.1155/2017/5947819
Research Article

Comparative Simulation Analysis of Process Parameter Variations in 20 nm Triangular FinFET

1Department of Electronic and Communication Engineering, Guru Nanak Dev Engineering College, Ludhiana 141006, India
2Semi-Conductor Laboratory, Department of Space, Government of India, Mohali 160071, India

Correspondence should be addressed to Navneet Kaur; ni.ca.cedng@ruakteenvan

Received 30 July 2016; Revised 31 October 2016; Accepted 17 November 2016; Published 21 March 2017

Academic Editor: Mingxiang Wang

Copyright © 2017 Satyam Shukla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Auth, C. Allen, A. Blattner et al., “A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors,” in Proceedings of the Symposium on VLSI Technology (VLSIT '12), pp. 131–132, Honolulu, Hawaii, USA, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Mohseni and J. D. Meindl, “Scaling limits of rectangular and trapezoidal channel FinFET,” in Proceedings of the IEEE Green Technologies Conference, pp. 204–210, Denver, Colo, USA, April 2013.
  3. B. D. Gaynor and S. Hassoun, “Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design,” IEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 2738–2744, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Nam and C. Shin, “Impact of current flow shape in tapered (versus rectangular) FinFET on threshold voltage variation induced by work-function variation,” IEEE Transactions on Electron Devices, vol. 61, no. 6, pp. 2007–2011, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. Duarte, N. Paydavosi, S. Venugopalam, A. Sachid, and C. Hu, “Unified FinFET compact model: modelling trapezoidal triple-gate FinFETs,” in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD '13), pp. 135–138, Glasgow, UK, September 2013.
  6. K. Wu, W.-W. Ding, and M.-H. Chiang, “Performance advantage and energy saving of triangular-shaped FinFETs,” in Proceedings of the 18th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD '13), pp. 143–146, Scotland, UK, September 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Poljak, V. Jovanovic, and T. Suligoj, “SOI vs. Bulk FinFET: body doping and corner effects influence on device characteristics,” in Proceedings of the 14th IEEE Mediterranean Electrotechnical Conference, pp. 425–430, 2008.
  8. X. Wu, P. C. H. Chan, and M. Chan, “Impacts of nonrectangular fin cross section on the electrical characteristics of FinFET,” IEEE Transactions on Electron Devices, vol. 52, no. 1, pp. 63–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Pei, J. Kedzierski, P. Oldiges, M. Ieong, and E. C.-C. Kan, “FinFET design considerations based on 3-D simulation and analytical modeling,” IEEE Transactions on Electron Devices, vol. 49, no. 8, pp. 1411–1419, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Fasarakis, T. A. Karatsori, A. Tsormpatzoglou et al., “Compact modeling of nanoscale trapezoidal finFETs,” IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 324–332, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. http://www.cogenda.com/article/Gds2Mesh.
  12. “Visual TCAD Brochure,” http://www.cogenda.com/article/downloads.
  13. 3D FinFET simulation with Density Gradient (DG) quantum correction model, http://www.cogenda.com/article/examples#FinFET-dg.
  14. N. Thapa, L. Maurya, and R. Mehra, “Performance advancement of High-K dielectric MOSFET,” International Journal of Innovations and Advancement in Computer Science, vol. 3, pp. 98–103, 2014. View at Google Scholar