Table of Contents Author Guidelines Submit a Manuscript
Advances in Pharmacological Sciences
Volume 2012, Article ID 981461, 8 pages
http://dx.doi.org/10.1155/2012/981461
Research Article

Effect of Coenzyme-Q10 on Doxorubicin-Induced Nephrotoxicity in Rats

1Department of Pharmacology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt
2Department of Histology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt

Received 12 August 2012; Revised 9 November 2012; Accepted 12 November 2012

Academic Editor: Ismail Laher

Copyright © 2012 Azza A. K. El-Sheikh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Carvalho, R. X. Santos, S. Cardoso et al., “Doxorubicin: the good, the bad and the ugly effect,” Current Medicinal Chemistry, vol. 16, no. 25, pp. 3267–3285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Ghibu, S. Delemasure, C. Richard et al., “General oxidative stress during doxorubicin-induced cardiotoxicity in rats: absence of cardioprotection and low antioxidant efficiency of alpha-lipoic acid,” Biochimie, vol. 94, no. 4, pp. 932–939, 2011. View at Google Scholar
  3. H. Mizutani, S. Tada-Oikawa, Y. Hiraku, M. Kojima, and S. Kawanishi, “Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide,” Life Sciences, vol. 76, no. 13, pp. 1439–1453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. V. W. Lee and D. C. Harris, “Adriamycin nephropathy: a model of focal segmental glomerulosclerosis,” Nephrology, vol. 16, no. 1, pp. 30–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Granados-Principal, J. L. Quiles, C. L. Ramirez-Tortosa, P. Sanchez-Rovira, and M. Ramirez-Tortosa, “New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients,” Food and Chemical Toxicology, vol. 48, no. 6, pp. 1425–1438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. A. Conklin, “Coenzyme Q10 for prevention of anthracycline-induced cardiotoxicity,” Integrative Cancer Therapies, vol. 4, no. 2, pp. 110–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. G. P. Littarru and L. Tiano, “Bioenergetic and antioxidant properties of coenzyme Q10: recent developments,” Molecular Biotechnology, vol. 37, no. 1, pp. 31–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Pravst, K. Žmitek, and J. Žmitek, “Coenzyme Q10 contents in foods and fortification strategies,” Critical Reviews in Food Science and Nutrition, vol. 50, no. 4, pp. 269–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Villalba, C. Parrado, M. Santos-Gonzalez, and F. J. Alcain, “Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations,” Expert Opinion on Investigational Drugs, vol. 19, no. 4, pp. 535–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. Fouad, A. I. Al-Sultan, S. M. Refaie, and M. T. Yacoubi, “Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice,” Toxicology, vol. 274, no. 1–3, pp. 49–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. F. Persson, S. Franzen, S. B. Catrina et al., “Coenzyme Q10 prevents GDP-sensitive mitochondrial uncoupling, glomerular hyperfiltration and proteinuria in kidneys from db/db mice as a model of type 2 diabetes,” Diabetologia, vol. 55, no. 5, pp. 1535–1543, 2012. View at Google Scholar
  12. E. Sutken, E. Aral, F. Ozdemir, S. Uslu, O. Alatas, and O. Colak, “Protective role of melatonin and coenzyme Q10 in ochratoxin A toxicity in rat liver and kidney,” International Journal of Toxicology, vol. 26, no. 1, pp. 81–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Długosz, J. Kuźniar, E. Sawicka et al., “Oxidative stress and coenzyme Q10 supplementation in renal transplant recipients,” International Urology and Nephrology, vol. 36, no. 2, pp. 253–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. H. S. El-Abhar, “Coenzyme Q10: a novel gastroprotective effect via modulation of vascular permeability, prostaglandin E2, nitric oxide and redox status in indomethacin-induced gastric ulcer model,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 314–319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. T. A. Ajith, M. S. Aswathy, and U. Hema, “Protective effect of Zingiber officinale roscoe against anticancer drug doxorubicin-induced acute nephrotoxicity,” Food and Chemical Toxicology, vol. 46, no. 9, pp. 3178–3181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology, vol. 52, pp. 302–310, 1978. View at Publisher · View at Google Scholar · View at Scopus
  17. K. V. H. Sastry, R. P. Moudgal, J. Mohan, J. S. Tyagi, and G. S. Rao, “Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy,” Analytical Biochemistry, vol. 306, no. 1, pp. 79–82, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Eaton, R. Skinner, J. P. Hale et al., “Plasma coenzyme Q10 in children and adolescents undergoing doxorubicin therapy,” Clinica Chimica Acta, vol. 302, no. 1-2, pp. 1–9, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Brea-Calvo, A. Rodríguez-Hernández, D. J. Fernández-Ayala, P. Navas, and J. A. Sánchez-Alcázar, “Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines,” Free Radical Biology & Medicine, vol. 40, no. 8, pp. 1293–1302, 2006. View at Google Scholar
  20. B. A. Chabner, D. P. Ryan, L. Paz-Ares, R. Garcia-Carbonevo, and P. Calabresi, “Antineoplastic agents,” in Goodman and Gilman’s the Pharmacological Basis of Therapeutics, J. G. Hardman, L. E. Limbird, and A. G. Gilman, Eds., pp. 1389–1459, McGraw-Hill, New York, NY, USA, 2001. View at Google Scholar
  21. M. Yagmurca, H. Erdogan, M. Iraz, A. Songur, M. Ucar, and E. Fadillioglu, “Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats,” Clinica Chimica Acta, vol. 348, no. 1-2, pp. 27–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Mohan, S. Kamble, P. Gadhi, and S. Kasture, “Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats,” Food and Chemical Toxicology, vol. 48, no. 1, pp. 436–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Zhou and B. Chowbay, “Effect of coenzyme Q10 on the disposition of doxorubicin in rats,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 27, no. 3, pp. 185–192, 2002. View at Google Scholar · View at Scopus
  24. H. Greenlee, J. Shaw, Y. K. Lau, A. Naini, and M. Maurer, “Lack of effect of coenzyme q10 on doxorubicin cytotoxicity in breast cancer cell cultures,” Integrative Cancer Therapies, vol. 11, no. 3, pp. 243–250, 2012. View at Google Scholar
  25. S. C. Sahu and G. C. Gray, “Pro-oxidant activity of flavanoids: effects on glutathione and glutathione S-transferase in isolated rat liver nuclei,” Cancer Letters, vol. 104, no. 2, pp. 193–196, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Tanwar, J. Sachdeva, M. Golechha, S. Kumari, and D. S. Arya, “Curcumin protects rat myocardium against isoproterenol-induced ischemic injury: attenuation of ventricular dysfunction through increased expression of hsp27 alongwith strengthening antioxidant defense system,” Journal of Cardiovascular Pharmacology, vol. 55, no. 4, pp. 377–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. R. E. Beyer, “The participation of coenzyme Q in free radical production and antioxidation,” Free Radical Biology and Medicine, vol. 8, no. 6, pp. 545–565, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. R. E. Beyer, “An analysis of the role of coenzyme Q in free radical generation and as an antioxidant,” Biochemistry and Cell Biology, vol. 70, no. 6, pp. 390–403, 1992. View at Google Scholar · View at Scopus
  29. A. W. Linnane, M. Kios, and L. Vitetta, “Coenzyme Q10 - Its role as a prooxidant in the formation of superoxide anion/hydrogen peroxide and the regulation of the metabolome,” Mitochondrion, vol. 7, pp. S51–S61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Plecitá-Hlavatá, J. Ježek, and P. Ježek, “Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 8-9, pp. 1697–1707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Sakata, R. Furuya, T. Shimazu, M. Odamaki, S. Ohkawa, and H. Kumagai, “Coenzyme Q10 administration suppresses both oxidative and antioxidative markers in hemodialysis patients,” Blood Purification, vol. 26, no. 4, pp. 371–378, 2008. View at Publisher · View at Google Scholar · View at Scopus