Table of Contents Author Guidelines Submit a Manuscript
Advances in Pharmacological Sciences
Volume 2013 (2013), Article ID 172494, 7 pages
http://dx.doi.org/10.1155/2013/172494
Research Article

The Potential Benefits and Adverse Effects of Phytic Acid Supplement in Streptozotocin-Induced Diabetic Rats

1Department of Life Sciences, Texas A&M University-Corpus Christi, Center for the Sciences, 130B, 6300 Ocean Drive, Unit 5802, Corpus Christi, TX 78412, USA
2Department of Medical Biochemistry, University of Benin, Benin City, Nigeria
3Department of Pathology, Clinical Chemistry Division, University of Texas Medical Branch, Galveston, TX, USA

Received 25 September 2013; Revised 4 November 2013; Accepted 11 November 2013

Academic Editor: Ismail Laher

Copyright © 2013 F. O. Omoruyi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Owen, U. M. Weisgerber, B. Spiegelhalder, and H. Bartsch, “Faecal phytic acid and its relation to other putative markers of risk for colorectal cancer,” Gut, vol. 38, no. 4, pp. 591–597, 1996. View at Google Scholar · View at Scopus
  2. H. W. Lopez, C. Coudray, J. Bellanger, H. Younes, C. Demigné, and C. Rémésy, “Intestinal fermentation lessens the inhibitory effects of phytic acid on mineral utilization in rats,” Journal of Nutrition, vol. 128, no. 7, pp. 1192–1198, 1998. View at Google Scholar · View at Scopus
  3. B. Q. Phillippy, “Inositol phosphates in foods,” Advances in Food and Nutrition Research, vol. 45, pp. 1–60, 2003. View at Google Scholar · View at Scopus
  4. J. R. Zhou and J. W. Erdman Jr., “Phytic acid in health and disease,” Critical Reviews in Food Science and Nutrition, vol. 35, no. 6, pp. 495–508, 1995. View at Google Scholar · View at Scopus
  5. N. D. Vanderlinden and I. Vucenik, Too Good to Be True?Bearing Marketing Communications Ltd, Ontario, Canada, 2004.
  6. B. Ludvik, W. Waldhäusl, R. Prager, A. Kautzky-Willer, and G. Pacini, “Mode of action of Ipomoea batatas (Caiapo) in type 2 diabetic patients,” Metabolism, vol. 52, no. 7, pp. 875–880, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. French, C. M. Bunce, L. R. Stephens et al., “Changes in the levels of inositol lipids and phosphates during the differentiation of HL60 promyelocytic cells towards neutrophils or monocytes,” Proceedings of the Royal Society B, vol. 245, no. 1314, pp. 193–201, 1991. View at Google Scholar · View at Scopus
  8. T. R. Jackson, T. J. Hallam, C. P. Downes, and M. R. Hanley, “Receptor coupled events in bradykinin action: rapid production of inositol phosphates and regulation of cytosolic free Ca2+ in a neural cell line,” The EMBO Journal, vol. 6, no. 1, pp. 49–54, 1987. View at Google Scholar · View at Scopus
  9. G. Li, W. F. Pralong, D. Pittet, G. W. Mayr, W. Schlegel, and C. B. Wollheim, “Inositol tetrakisphosphate isomers and elevation of cytosolic Ca2+ in vasopressin-stimulated insulin-secreting RINm5F cells,” Journal of Biological Chemistry, vol. 267, no. 7, pp. 4349–4356, 1992. View at Google Scholar · View at Scopus
  10. F. Grases, P. Sanchis, J. Perello et al., “Phytate reduces age-related cardiovascular calcification,” Frontiers in Bioscience, vol. 13, no. 18, pp. 7115–7122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. K. Sudheer, B. R. Sridhar, S. K. Babu, P. M. Bhilegaonkar, A. Shirwaikar, and M. K. Unnikrishnan, “Antiinflammatory and antiulcer activities of phytic acid in rats,” Indian Journal of Experimental Biology, vol. 42, no. 2, pp. 179–185, 2004. View at Google Scholar · View at Scopus
  12. D. W. Kamp, V. A. Israbian, A. V. Yeldandi, R. J. Panos, P. Graceffa, and S. A. Weitzman, “Phytic acid, an iron chelator, attenuates pulmonary inflammation and fibrosis in rats after intratracheal instillation of asbestos,” Toxicologic Pathology, vol. 23, no. 6, pp. 689–695, 1995. View at Google Scholar · View at Scopus
  13. A. M. Minihane and G. Rimbach, “Iron absorption and the iron binding and anti-oxidant properties of phytic acid,” International Journal of Food Science and Technology, vol. 37, no. 7, pp. 741–748, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Storey and E. Bailey, “Effect of streptozotocin diabetes and insulin administration on some liver enzyme activities in the post-weaning rat,” Enzyme, vol. 23, no. 6, pp. 382–387, 1978. View at Google Scholar · View at Scopus
  15. L. L. Dilworth, F. O. Omoruyi, O. R. Simon, E. Y. S. A. Morrison, and H. N. Asemota, “The effect of phytic acid on the levels of blood glucose and some enzymes of carbohydrate and lipid metabolism,” West Indian Medical Journal, vol. 54, no. 2, pp. 102–106, 2005. View at Google Scholar · View at Scopus
  16. M. Torre, A. R. Rodriguez, and F. Saura-Calixto, “Effects of dietary fiber and phytic acid on mineral availability,” Critical Reviews in Food Science and Nutrition, vol. 30, no. 1, pp. 1–22, 1991. View at Google Scholar · View at Scopus
  17. F. Omoruyi and I. Adamson, “Digestive and hepatic enzymes in streptozotocin-induced diabetic rats fed supplements of dikanut (Irvingia gabonensis) and cellulose,” Annals of Nutrition and Metabolism, vol. 37, no. 1, pp. 14–23, 1993. View at Google Scholar · View at Scopus
  18. F. Omoruyi and I. Adamson, “Effect of supplements of dikanut (Irvingia gabonensis) and cellulose on plasma lipids and composition of hepatic phospholipids in streptozotocin- induced diabetic rat,” Nutrition Research, vol. 14, no. 4, pp. 537–544, 1994. View at Google Scholar · View at Scopus
  19. S. Onomi, Y. Okazaki, and T. Katayama, “Effect of dietary level of phytic acid on hepatic and serum lipid status in rats fed a high-sucrose diet,” Bioscience, Biotechnology and Biochemistry, vol. 68, no. 6, pp. 1379–1381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. G. P. McGregor, J. F. Desaga, K. Ehlenz et al., “Radioimmunological measurement of leptin in plasma of obese and diabetic human subjects,” Endocrinology, vol. 137, no. 4, pp. 1501–1504, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Engeli, M. Feldpausch, K. Gorzelniak et al., “Association between adiponectin and mediators of inflammation in obese women,” Diabetes, vol. 52, no. 4, pp. 942–947, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Zoccali, F. Mallamaci, G. Tripepi et al., “Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease,” Journal of the American Society of Nephrology, vol. 13, no. 1, pp. 134–141, 2002. View at Google Scholar · View at Scopus
  23. P. Wiedmer, R. Nogueiras, F. Broglio, D. D'Alessio, and M. H. Tschöp, “Ghrelin, obesity and diabetes,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 10, pp. 705–712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. D. E. Cummings, J. Q. Purnell, R. S. Frayo, K. Schmidova, B. E. Wisse, and D. S. Weigle, “A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans,” Diabetes, vol. 50, no. 8, pp. 1714–1719, 2001. View at Google Scholar · View at Scopus
  25. L. U. Thompson, “Antinutrients and blood glucose,” Food Technology, vol. 42, pp. 123–132, 1988. View at Google Scholar
  26. R. Patel, M. D. Yago, E. M. Victoria, A. Shervington, and J. Singh, “Mechanism of exocrine pancreatic insufficiency in streptozotocin-induced diabetes mellitus in rat: effect of cholecystokinin-octapeptide,” Molecular and Cellular Biochemistry, vol. 261, no. 1, pp. 83–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Kuppusamy, U. Muthusamy, S. Andichetiar Thirumalaisamy, S. Varadharajan, K. Ramasamy, and S. Ramanathan, “In vitro (α-glucosidase and α-amylase inhibition) and in vivo antidiabetic property of phytic acid (IP6) in streptozotocin-nicotinamide- induced type 2 diabetes mellitus (NIDDM) in rats,” Journal of Complementary and Integrative Medicine, vol. 8, no. 1, pp. 1553–3840, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-H. Lee, H.-J. Park, S.-Y. Cho et al., “Effects of dietary phytic acid on serum and hepatic lipid levels in diabetic KK mice,” Nutrition Research, vol. 25, no. 9, pp. 869–876, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Liu, Y. Ru, J. Wang, and T. Xu, “Effect of dietary sodium phytate and microbial phytase on the lipase activity and lipid metabolism of broiler chickens,” British Journal of Nutrition, vol. 103, no. 6, pp. 862–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Yuangklang, T. Wensing, A. G. Lemmens, S. Jittakhot, and A. C. Beynen, “Effect of sodium phytate supplementation on fat digestion and cholesterol metabolism in female rats,” Journal of Animal Physiology and Animal Nutrition, vol. 89, no. 11-12, pp. 373–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. P. S. M. Prince and N. K. Kannan, “Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats,” Journal of Pharmacy and Pharmacology, vol. 58, no. 10, pp. 1373–1383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Rydgren and S. Sandler, “The protective effect of simvastatin against low dose streptozotocin induced type 1 diabetes in mice is independent of inhibition of HMG-CoA reductase,” Biochemical and Biophysical Research Communications, vol. 379, no. 4, pp. 1076–1079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Karthikesan, L. Pari, and V. P. Menon, “Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents,” Chemico-Biological Interactions, vol. 188, no. 3, pp. 643–650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. R. Pincus and J. R. Sehaffner, Assessment of Liver Function in Clinical Diagnosis and Management By Laboratory Methods, Saunders, Philadelphia, Pa, USA, 1996.
  35. A. Roeske-Nielsen, P. Fredman, J. E. Mansson, K. Bendtzen, and K. Buschard, “Beta-galactosylceramide increases and sulfatide decreases cytokine and chemokine production in whole blood cells,” Immunology Letters, vol. 91, no. 2-3, pp. 205–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Kakisaka and Y. Takikawa, “Elevation of serum cytokines preceding elevation of liver enzymes in a case of drug-induced liver injury,” Hepatology Research, 2013. View at Publisher · View at Google Scholar