Table of Contents Author Guidelines Submit a Manuscript
Advances in Pharmacological Sciences
Volume 2016, Article ID 8964849, 14 pages
http://dx.doi.org/10.1155/2016/8964849
Review Article

A Review on Potential Mechanisms of Terminalia chebula in Alzheimer’s Disease

1Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
2Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran

Received 25 November 2015; Revised 7 January 2016; Accepted 10 January 2016

Academic Editor: Berend Olivier

Copyright © 2016 Amir R. Afshari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Stern, “Cognitive reserve and Alzheimer disease,” Alzheimer Disease & Associated Disorders, vol. 20, no. 2, pp. 112–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. H.-R. Adhami, H. Farsam, and L. Krenn, “Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition,” Phytotherapy Research, vol. 25, no. 8, pp. 1148–1152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Vinutha, D. Prashanth, K. Salma et al., “Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity,” Journal of Ethnopharmacology, vol. 109, no. 2, pp. 359–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Chopra, S. Misra, and A. Kuhad, “Current perspectives on pharmacotherapy of Alzheimer's disease,” Expert Opinion on Pharmacotherapy, vol. 12, no. 3, pp. 335–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. López, J. Bastida, F. Viladomat, and C. Codina, “Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts,” Life Sciences, vol. 71, no. 21, pp. 2521–2529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. G. L. Ellman, K. D. Courtney, V. Andres Jr., and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–95, 1961. View at Publisher · View at Google Scholar · View at Scopus
  7. I. K. Rhee, M. van de Meent, K. Ingkaninan, and R. Verpoorte, “Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining,” Journal of Chromatography A, vol. 915, no. 1-2, pp. 217–223, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Anand and B. Singh, “A review on cholinesterase inhibitors for Alzheimer's disease,” Archives of Pharmacal Research, vol. 36, no. 4, pp. 375–399, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. M. M. Dirin, S. Mousavi, A. R. Afshari, K. Tabrizian, and M. H. Ashrafi, “Potential drug-drug interactions in prescriptions dispensed in community and hospital pharmacies in East of Iran,” Journal of Research in Pharmacy Practice, vol. 3, no. 3, pp. 104–107, 2014. View at Publisher · View at Google Scholar
  10. B. H. May, M. Lit, C. C. L. Xue et al., “Herbal medicine for dementia: a systematic review,” Phytotherapy Research, vol. 23, no. 4, pp. 447–459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Akhondzadeh and S. H. Abbasi, “Herbal medicine in the treatment of Alzhelmer's disease,” American Journal of Alzheimer's Disease and other Dementias, vol. 21, no. 2, pp. 113–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. L. D. Santos-Neto, M. A. de Vilhena Toledo, P. Medeiros-Souza, and G. A. de Souza, “The use of herbal medicine in Alzheimer's disease—a systematic review,” Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 4, pp. 441–445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Saleem, M. Husheem, P. Härkönen, and K. Pihlaja, “Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula retz. fruit,” Journal of Ethnopharmacology, vol. 81, no. 3, pp. 327–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. Ali, A. R. Hamed, M. M. Soltan et al., “In-vitro evaluation of selected Egyptian traditional herbal medicines for treatment of Alzheimer disease,” BMC Complementary and Alternative Medicine, vol. 13, no. 1, p. 121, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Rathinamoorthy and G. Thilagavathi, “Terminalia chebula—review on pharmacological and biochemical studies,” International Journal of PharmTech Research, vol. 6, no. 1, pp. 97–116, 2014. View at Google Scholar · View at Scopus
  16. A. Manosroi, P. Jantrawut, E. Ogihara et al., “Biological activities of phenolic compounds and triterpenoids from the Galls of Terminalia chebula,” Chemistry & Biodiversity, vol. 10, no. 8, pp. 1448–1463, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. N. K. Rao and S. Nammi, “Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. seeds in streptozotocin-induced diabetic rats,” BMC Complementary and Alternative Medicine, vol. 6, no. 1, article 17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Aneja and R. Joshi, “Evaluation of antimicrobial properties of fruit extracts of Terminalia chebula against dental caries pathogens,” Jundishapur Journal of Microbiology, vol. 2, no. 3, pp. 105–111, 2009. View at Google Scholar
  19. B. Dutta, I. Rahman, and T. Das, “Antifungal activity of Indian plant extracts: antimyzetische Aktivität indischer Pflanzenextrakte,” Mycoses, vol. 41, no. 11-12, pp. 535–536, 1998. View at Publisher · View at Google Scholar
  20. V. Aher and A. Wahi, “Immunomodulatory activity of alcohol extract of Terminalia chebula retz combretaceae,” Tropical Journal of Pharmaceutical Research, vol. 10, no. 5, pp. 567–575, 2011. View at Google Scholar · View at Scopus
  21. M.-J. Ahn, C. Y. Kim, J. S. Lee et al., “Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis,” Planta Medica, vol. 68, no. 5, pp. 457–459, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Maruthappan and K. S. Shree, “Hypolipidemic activity of Haritaki (Terminalia chebula) in atherogenic diet induced hyperlipidemic rats,” Journal of Advanced Pharmaceutical Technology and Research, vol. 1, no. 2, pp. 229–235, 2010. View at Google Scholar · View at Scopus
  23. S. Srigopalram and I. A. Jayraaj, “Effect of Terminalia chebula retz on den induced hepatocellular carcinogenesis in experimental rats,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 2, pp. 440–445, 2012. View at Google Scholar · View at Scopus
  24. P. Sharma, T. Prakash, D. Kotresha et al., “Antiulcerogenic activity of Terminalia chebula fruit in experimentally induced ulcer in rats,” Pharmaceutical Biology, vol. 49, no. 3, pp. 262–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. P. Singh and C. S. Sharma, “Wound healing activity of Terminalia chebula in experimentally induced diabetic rats,” International Journal of PharmTech Research, vol. 1, no. 4, pp. 1267–1270, 2009. View at Google Scholar · View at Scopus
  26. C. Engels, M. Knödler, Y.-Y. Zhao, R. Carle, M. G. Gänzle, and A. Schieber, “Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels,” Journal of Agricultural and Food Chemistry, vol. 57, no. 17, pp. 7712–7718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Zhao, H. Sun, A. Hou, Q. Zhao, T. Wei, and W. Xin, “Antioxidant properties of two gallotannins isolated from the leaves of Pistacia weinmannifolia,” Biochimica et Biophysica Acta (BBA)—General Subjects, vol. 1725, no. 1, pp. 103–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Sangiovanni, U. Vrhovsek, G. Rossoni et al., “Ellagitannins from Rubus berries for the control of gastric inflammation: in vitro and in vivo studies,” PLoS ONE, vol. 8, no. 8, Article ID e71762, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. R. H. Hussein and F. K. Khalifa, “The protective role of ellagitannins flavonoids pretreatment against N-nitrosodiethylamine induced-hepatocellular carcinoma,” Saudi Journal of Biological Sciences, vol. 21, no. 6, pp. 589–596, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Lee, S. Y. Lee, Y. Son, and J. Yun, “Gallic acid decreases inflammatory cytokine secretion through histone acetyltransferase/histone deacetylase regulation in high glucose-induced human monocytes,” Journal of Medicinal Food, vol. 18, no. 7, pp. 793–801, 2015. View at Publisher · View at Google Scholar
  31. H. Walia and S. Arora, “Terminalia chebula—a pharmacognistic account,” Journal of Medicinal Plants Research, vol. 7, no. 20, pp. 1351–1361, 2013. View at Google Scholar
  32. D. H. Priscilla and P. S. M. Prince, “Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats,” Chemico-Biological Interactions, vol. 179, no. 2-3, pp. 118–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. L. D. Reynolds and N. G. Wilson, Scribes and Scholars, Cambridge University Press, Cambridge, UK, 1974.
  34. H.-H. Ho, C.-S. Chang, W.-C. Ho, S.-Y. Liao, C.-H. Wu, and C.-J. Wang, “Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals,” Food and Chemical Toxicology, vol. 48, no. 8-9, pp. 2508–2516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. Farag, D. A. Al-Mahdy, R. Salah El Dine et al., “Structure—activity relationships of antimicrobial gallic acid derivatives from pomegranate and acacia fruit extracts against potato bacterial wilt pathogen,” Chemistry & Biodiversity, vol. 12, no. 6, pp. 955–962, 2015. View at Publisher · View at Google Scholar
  36. A. Ibrahim, R. El Kareem, and M. Sheir, “Elucidation of acrylamide genotoxicity and neurotoxicity and the protective role of gallic acid and green tea,” Journal of Forensic Toxicology & Pharmacology, vol. 4, no. 1, article 1, 2015. View at Publisher · View at Google Scholar
  37. S.-I. Hamada, T. Kataoka, J.-T. Woo et al., “Immunosuppressive effects of gallic acid and chebulagic acid on CTL-mediated cytotoxicity,” Biological and Pharmaceutical Bulletin, vol. 20, no. 9, pp. 1017–1019, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Sarkaki, H. Fathimoghaddam, S. M. T. Mansouri, M. S. Korrani, G. Saki, and Y. Farbood, “Gallic acid improves cognitive, hippocampal long-term potentiation deficits and brain damage induced by chronic cerebral hypoperfusion in rats,” Pakistan Journal of Biological Sciences, vol. 17, no. 8, pp. 978–990, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. O. S. Ajala, A. Jukov, and C.-M. Ma, “Hepatitis C virus inhibitory hydrolysable tannins from the fruits of Terminalia chebula,” Fitoterapia, vol. 99, pp. 117–123, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. A. T. Pham, K. E. Malterud, B. S. Paulsen, D. Diallo, and H. Wangensteen, “α-Glucosidase inhibition, 15-lipoxygenase inhibition, and brine shrimp toxicity of extracts and isolated compounds from Terminalia macroptera leaves,” Pharmaceutical Biology, vol. 52, no. 9, pp. 1166–1169, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. H.-S. Lee, S.-H. Jung, B.-S. Yun, and K.-W. Lee, “Isolation of chebulic acid from Terminalia chebula Retz. and its antioxidant effect in isolated rat hepatocytes,” Archives of Toxicology, vol. 81, no. 3, pp. 211–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Yang, J. Xiu, J. Liu et al., “Chebulagic acid, a hydrolyzable tannin, exhibited antiviral activity in vitro and in vivo against human enterovirus 71,” International Journal of Molecular Sciences, vol. 14, no. 5, pp. 9618–9627, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Banerjee, G. Mukherjee, and K. C. Patra, “Microbial transformation of tannin-rich substrate to gallic acid through co-culture method,” Bioresource Technology, vol. 96, no. 8, pp. 949–953, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. D. B. Reddy and P. Reddanna, “Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages,” Biochemical and Biophysical Research Communications, vol. 381, no. 1, pp. 112–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Y.-N. Huang, D.-D. Zhao, B. Gao et al., “Anti-hyperglycemic effect of chebulagic acid from the fruits of Terminalia chebula Retz,” International Journal of Molecular Sciences, vol. 13, no. 5, pp. 6320–6333, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. H. J. Kim, J. Kim, K. S. Kang, K. T. Lee, and H. O. Yang, “Neuroprotective effect of chebulagic acid via autophagy induction in SH-SY5Y cells,” Biomolecules and Therapeutics, vol. 22, no. 4, pp. 275–281, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. A. P. Athira, A. Helen, K. Saja, P. Reddanna, and P. R. Sudhakaran, “Inhibition of angiogenesis in vitro by chebulagic acid: a COX-LOX dual inhibitor,” International Journal of Vascular Medicine, vol. 2013, Article ID 843897, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Kumar, D. Gangappa, G. Gupta, and R. Karnati, “Chebulagic acid from Terminalia chebula causes G1 arrest, inhibits NFκB and induces apoptosis in retinoblastoma cells,” BMC Complementary and Alternative Medicine, vol. 14, article 319, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. V. Mishra, M. Agrawal, S. A. Onasanwo et al., “Anti-secretory and cyto-protective effects of chebulinic acid isolated from the fruits of Terminalia chebula on gastric ulcers,” Phytomedicine, vol. 20, no. 6, pp. 506–511, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Lu, D. Chakroborty, C. Sarkar et al., “Triphala and its active constituent chebulinic acid are natural inhibitors of vascular endothelial growth factor-a mediated angiogenesis,” PLoS ONE, vol. 7, no. 8, Article ID e43934, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. Z.-C. Yi, Z. Wang, H.-X. Li, M.-J. Liu, R.-C. Wu, and X.-H. Wang, “Effects of chebulinic acid on differentiation of human leukemia K562 cells,” Acta Pharmacologica Sinica, vol. 25, no. 2, pp. 231–238, 2004. View at Google Scholar · View at Scopus
  52. T. Tanaka, I. Kouno, and G.-I. Nonaka, “Glutathione-mediated conversion of the ellagitannin geraniin into chebulagic acid,” Chemical and Pharmaceutical Bulletin, vol. 44, no. 1, pp. 34–40, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Mansouri, A. Hemmati, B. Naghizadeh, S. Mard, A. Rezaie, and B. Ghorbanzadeh, “A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats,” Indian Journal of Pharmacology, vol. 47, no. 3, pp. 292–298, 2015. View at Publisher · View at Google Scholar
  54. S. Goswami, M. Vishwanath, S. Gangadarappa, R. Razdan, and M. Inamdar, “Efficacy of ellagic acid and sildenafil in diabetes-induced sexual dysfunction,” Pharmacognosy Magazine, vol. 10, supplement 3, pp. 581–587, 2014. View at Google Scholar
  55. W. R. García-Niño and C. Zazueta, “Ellagic acid: pharmacological activities and molecular mechanisms involved in liver protection,” Pharmacological Research, vol. 97, pp. 84–103, 2015. View at Publisher · View at Google Scholar
  56. M. Dianat, N. Amini, M. Badavi, and Y. Farbood, “Ellagic acid improved arrhythmias induced by CaCL2 in the rat stress model,” Avicenna Journal of Phytomedicine, vol. 5, no. 2, pp. 120–127, 2015. View at Google Scholar
  57. M. Dolatshahi, Y. Farbood, A. Sarkaki, S. M. T. Mansouri, and A. Khodadadi, “Ellagic acid improves hyperalgesia and cognitive deficiency in 6-hydroxidopamine induced rat model of Parkinson’s disease,” Iranian Journal of Basic Medical Sciences, vol. 18, no. 1, pp. 38–46, 2015. View at Google Scholar · View at Scopus
  58. Y. Farbood, A. Sarkaki, M. Dianat, A. Khodadadi, M. K. Haddad, and S. Mashhadizadeh, “Ellagic acid prevents cognitive and hippocampal long-term potentiation deficits and brain inflammation in rat with traumatic brain injury,” Life Sciences, vol. 124, pp. 120–127, 2015. View at Publisher · View at Google Scholar
  59. C. Wang, D. Zhang, H. Ma, and J. Liu, “Neuroprotective effects of emodin-8-O-β-d-glucoside in vivo and in vitro,” European Journal of Pharmacology, vol. 577, no. 1–3, pp. 58–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. Y.-L. Xu, L.-Y. Tang, X.-D. Zhou, G.-H. Zhou, and Z.-J. Wang, “Five new anthraquinones from the seed of Cassia obtusifolia,” Archives of Pharmacal Research, vol. 38, no. 6, pp. 1054–1058, 2015. View at Publisher · View at Google Scholar · View at Scopus
  61. P. C. Gupta, “Biological and pharmacological properties of Terminalia chebula retz. (haritaki)- an overview,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, supplement 3, pp. 62–68, 2012. View at Google Scholar · View at Scopus
  62. A. Bag, S. K. Bhattacharyya, and R. R. Chattopadhyay, “The development of Terminalia chebula Retz. (Combretaceae) in clinical research,” Asian Pacific Journal of Tropical Biomedicine, vol. 3, no. 3, pp. 244–252, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. I. Mueller-Harvey, “Analysis of hydrolysable tannins,” Animal Feed Science and Technology, vol. 91, no. 1-2, pp. 3–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Lokeswari and K. J. Raju, “Optimization of gallic acid production from terminalia chebula by Aspergillus niger,” E-Journal of Chemistry, vol. 4, no. 2, pp. 287–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Niemetz and G. G. Gross, “Enzymology of gallotannin and ellagitannin biosynthesis,” Phytochemistry, vol. 66, no. 17, pp. 2001–2011, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Yoshida, Y. Amakura, and M. Yoshimura, “Structural features and biological properties of ellagitannins in some plant families of the order myrtales,” International Journal of Molecular Sciences, vol. 11, no. 1, pp. 79–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. P.-S. Chen and J.-H. Li, “Chemopreventive effect of punicalagin, a novel tannin component isolated from Terminalia catappa, on H-ras-transformed NIH3T3 cells,” Toxicology Letters, vol. 163, no. 1, pp. 44–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. Q. Han, J. Song, C. Qiao, L. Wong, and H. Xu, “Preparative isolation of hydrolysable tannins chebulagic acid and chebulinic acid from Terminalia chebula by high-speed counter-current chromatography,” Journal of Separation Science, vol. 29, no. 11, pp. 1653–1657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. H. K. Sharma, S. Soni, P. Kaushal, and C. Singh, “Effect of process parameters on the antioxidant activities of bioactive compounds from Harad (Terminalia chebula retz.) Shilpa Soni, H.K. Sharma, Pragati Kaushal and C. Singh Food Engineering & Technology Department, Sant Longowal Institute of Engineeri,” Agricultural Engineering International: CIGR Journal, vol. 17, no. 2, 2015. View at Google Scholar
  70. G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochimica et Biophysica Acta (BBA)—General Subjects, vol. 1472, no. 1-2, pp. 142–152, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Surveswaran, Y.-Z. Cai, H. Corke, and M. Sun, “Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants,” Food Chemistry, vol. 102, no. 3, pp. 938–953, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Onial, R. Dayal, M. Rawat, and R. Kumar, “Utilization of Terminalia chebula Retz. fruits pericarp as a source of natural dye for textile applications,” Indian Journal of Natural Products and Resources (IJNPR), vol. 6, no. 2, pp. 114–121, 2015. View at Google Scholar
  73. H. G. Kim, J. H. Cho, E. Y. Jeong, J. H. Lim, S. H. Lee, and H. S. Lee, “Growth-inhibiting activity of active component isolated from Terminalia chebula fruits against intestinal bacteria,” Journal of Food Protection, vol. 69, no. 9, pp. 2205–2209, 2006. View at Google Scholar · View at Scopus
  74. P. Onial, M. Rawat, and R. Dayal, “Chemical studies of fatty oil of Terminalia chebula seeds kernels,” Analytical Chemistry Letters, vol. 4, no. 5-6, pp. 359–363, 2014. View at Publisher · View at Google Scholar
  75. X. Zhang, C. Chen, S. He, and F. Ge, “Supercritical-CO2 fluid extraction of the fatty oil in Terminalia chebula and GC-MS analysis,” Journal of Chinese Medicinal Materials, vol. 20, no. 9, pp. 463–464, 1997. View at Google Scholar · View at Scopus
  76. D. B. Reddy, T. C. M. Reddy, G. Jyotsna et al., “Chebulagic acid, a COX–LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz., induces apoptosis in COLO-205 cell line,” Journal of Ethnopharmacology, vol. 124, no. 3, pp. 506–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Anand, B. Singh, and N. Singh, “A review on coumarins as acetylcholinesterase inhibitors for Alzheimer's disease,” Bioorganic and Medicinal Chemistry, vol. 20, no. 3, pp. 1175–1180, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Pohanka, “Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology,” International Journal of Molecular Sciences, vol. 13, no. 2, pp. 2219–2238, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. J. R. Suarez-Lopez, J. H. Himes, D. R. Jacobs Jr., B. H. Alexander, and M. R. Gunnar, “Acetylcholinesterase activity and neurodevelopment in boys and girls,” Pediatrics, vol. 132, no. 6, pp. e1649–e1658, 2013. View at Publisher · View at Google Scholar · View at Scopus
  80. C. F. Bartels, T. Zelinski, and O. Lockridge, “Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for YT blood group polymorphism,” The American Journal of Human Genetics, vol. 52, no. 5, pp. 928–936, 1993. View at Google Scholar · View at Scopus
  81. S. Greenfield and D. J. Vaux, “Parkinson's disease, Alzheimer's disease and motor neurone disease: identifying a common mechanism,” Neuroscience, vol. 113, no. 3, pp. 485–492, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Day and S. A. Greenfield, “A peptide derived from acetylcholinesterase induces neuronal cell death: characterisation of possible mechanisms,” Experimental Brain Research, vol. 153, no. 3, pp. 334–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. P. T. Francis, A. Nordberg, and S. E. Arnold, “A preclinical view of cholinesterase inhibitors in neuroprotection: do they provide more than symptomatic benefits in Alzheimer's disease?” Trends in Pharmacological Sciences, vol. 26, no. 2, pp. 104–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Darreh-Shori, E. Hellström-Lindahl, C. Flores-Flores, Z. Z. Guan, H. Soreq, and A. Nordberg, “Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer's disease patients,” Journal of Neurochemistry, vol. 88, no. 5, pp. 1102–1113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Borisovskaya, M. Pascualy, and S. Borson, “Cognitive and neuropsychiatric impairments in Alzheimer's disease: current treatment strategies,” Current Psychiatry Reports, vol. 16, no. 9, pp. 1–9, 2014. View at Publisher · View at Google Scholar
  86. M. H. Oh, P. J. Houghton, W. K. Whang, and J. H. Cho, “Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity,” Phytomedicine, vol. 11, no. 6, pp. 544–548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. V. Schulz, “Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider,” Phytomedicine, vol. 10, no. 4, pp. 74–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Sancheti, S. Sancheti, B.-H. Um, and S.-Y. Seo, “1,2,3,4,6-penta-O-galloyl-β-D-glucose: a cholinesterase inhibitor from Terminalia chebula,” South African Journal of Botany, vol. 76, no. 2, pp. 285–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Nag and B. De, “Acetylcholinesterase inhibitory activity of Terminalia chebula, Terminalia bellerica and Emblica officinalis and some phenolic compounds,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 3, no. 3, pp. 121–124, 2011. View at Google Scholar · View at Scopus
  90. A. P. Murray, M. B. Faraoni, M. J. Castro, N. P. Alza, and V. Cavallaro, “Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy,” Current Neuropharmacology, vol. 11, no. 4, pp. 388–413, 2013. View at Publisher · View at Google Scholar
  91. C. Sulaiman, C. Sadashiva, S. George, and I. Balachandran, “Acetylcholinestrase inhibition and antioxidant activity of Terminalia chebula, Retz,” Journal of Tropical Medicinal Plants, vol. 13, no. 2, pp. 125–127, 2012. View at Google Scholar
  92. A. Upadhyay and D. K. Singh, “Inhibition kinetics of certain enzymes in the nervous tissue of vector snail Lymnaea acuminata by active molluscicidal components of Sapindus mukorossi and Terminalia chebula,” Chemosphere, vol. 85, no. 6, pp. 1095–1100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Parle and M. Vasudevan, “Memory enhancing activity of Abana: an indian ayurvedic poly-herbal formulation,” Journal of Health Science, vol. 53, no. 1, pp. 43–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Walia, J. Kaur, and S. Arora, “Antioxidant efficacy of fruit extracts of Terminalia chebula prepared by sequential method using TA-102 strain of Salmonella typhimurium,” Spatula DD, vol. 2, no. 2, pp. 165–171, 2012. View at Publisher · View at Google Scholar
  95. P. Dhivya, M. Sobiya, P. Selvamani, and S. Latha, “An approach to Alzheimer's disease treatment with cholinesterase inhibitory activity from various plant species,” International Journal of PharmTech Research, vol. 6, no. 5, pp. 1450–1467, 2014. View at Google Scholar
  96. P. Pithayanukul, P. Ruenraroengsak, R. Bavovada, N. Pakmanee, and R. Suttisri, “In vitro. Investigation of the protective effects of tannic acid against the activities of Naja kaouthia. Venom,” Pharmaceutical Biology, vol. 45, no. 2, pp. 94–97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Mathew and S. Subramanian, “In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders,” PLoS ONE, vol. 9, no. 1, Article ID e86804, 2014. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Y. Shin, H. J. Jeong, D. K. Kim et al., “Inhibitory action of water soluble fraction of Terminalia chebula on systemic and local anaphylaxis,” Journal of Ethnopharmacology, vol. 74, no. 2, pp. 133–140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. K.-C. Choi, Y.-H. Lee, M. G. Jung et al., “Gallic acid suppresses lipopolysaccharide-induced nuclear factor-κB signaling by preventing RelA acetylation in A549 lung cancer cells,” Molecular Cancer Research, vol. 7, no. 12, pp. 2011–2021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. N. D. Das, K. H. Jung, J. H. Park et al., “Terminalia chebula extract acts as a potential NF-κB inhibitor in human lymphoblastic T cells,” Phytotherapy Research, vol. 25, no. 6, pp. 927–934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. M.-J. Kim, A.-R. Seong, J.-Y. Yoo et al., “Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation,” Molecular Nutrition & Food Research, vol. 55, no. 12, pp. 1798–1808, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. Y.-J. Wang, P. Thomas, J.-H. Zhong et al., “Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an alzheimer's disease mouse,” Neurotoxicity Research, vol. 15, no. 1, pp. 3–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. S.-H. Kim, C.-D. Jun, K. Suk et al., “Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells,” Toxicological Sciences, vol. 91, no. 1, pp. 123–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. V. Nair, S. Singh, and Y. K. Gupta, “Anti-arthritic and disease modifying activity of Terminalia chebula Retz. in experimental models,” Journal of Pharmacy and Pharmacology, vol. 62, no. 12, pp. 1801–1806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Moeslinger, R. Friedl, I. Volf, M. Brunner, E. Koller, and P. G. Spieckermann, “Inhibition of inducible nitric oxide synthesis by the herbal preparation Padma 28 in macrophage cell line,” Canadian Journal of Physiology and Pharmacology, vol. 78, no. 11, pp. 861–866, 2000. View at Publisher · View at Google Scholar · View at Scopus
  106. R. Patil, B. Nanjwade, and F. Manvi, “Evaluation of anti-inflammatory and antiarthritic effect of sesbania grandiflora bark and fruit of Terminalia chebula in rats,” International Journal of Pharmacology and Biological Sciences, vol. 5, no. 1, pp. 37–46, 2011. View at Google Scholar
  107. A. Bag, S. Kumar Bhattacharyya, N. Kumar Pal, and R. R. Chattopadhyay, “Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula fruits,” Pharmaceutical Biology, vol. 51, no. 12, pp. 1515–1520, 2013. View at Publisher · View at Google Scholar · View at Scopus
  108. E. P. Sabina and M. Rasool, “An in vivo and in vitro potential of Indian ayurvedic herbal formulation Triphala on experimental gouty arthritis in mice,” Vascular Pharmacology, vol. 48, no. 1, pp. 14–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. R. Ramani and S. Pradhan, “Antiarthritic activity of acetone extract of Terminalia chebula,” WebmedCentral Pharmacology, vol. 3, no. 2, Article ID WMC003057, pp. 1–9, 2012. View at Publisher · View at Google Scholar
  110. P. Srivastava, H. N. Raut, R. S. Wagh, H. M. Puntambekar, and M. J. Kulkarni, “Purification and characterization of an antioxidant protein (~16 kDa) from Terminalia chebula fruit,” Food Chemistry, vol. 131, no. 1, pp. 141–148, 2012. View at Publisher · View at Google Scholar · View at Scopus
  111. C. S. Atwood, M. E. Obrenovich, T. Liu et al., “Amyloid-β: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-β,” Brain Research Reviews, vol. 43, no. 1, pp. 1–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. B. Uttara, A. V. Singh, P. Zamboni, and R. T. Mahajan, “Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options,” Current Neuropharmacology, vol. 7, no. 1, pp. 65–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Hensley, N. Hall, R. Subramaniam et al., “Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation,” Journal of Neurochemistry, vol. 65, no. 5, pp. 2146–2156, 1995. View at Google Scholar · View at Scopus
  114. K. Hensley, J. Carney, N. Hall, W. Shaw, and D. A. Butterfield, “Electron paramagnetic resonance investigations of free radical-induced alterations in neocortical synaptosomal membrane protein infrastructure,” Free Radical Biology and Medicine, vol. 17, no. 4, pp. 321–331, 1994. View at Publisher · View at Google Scholar · View at Scopus
  115. R. X. Santos, S. C. Correia, X. Zhu et al., “Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease,” Antioxidants & Redox Signaling, vol. 18, no. 18, pp. 2444–2457, 2013. View at Publisher · View at Google Scholar · View at Scopus
  116. P. Mecocci, U. MacGarvey, and M. F. Beal, “Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease,” Annals of Neurology, vol. 36, no. 5, pp. 747–751, 1994. View at Publisher · View at Google Scholar · View at Scopus
  117. H.-T. Lee, C.-S. Lin, C.-S. Lee, C.-Y. Tsai, and Y.-H. Wei, “Increased 8-hydroxy-2′-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus,” Clinical & Experimental Immunology, vol. 176, no. 1, pp. 66–77, 2014. View at Publisher · View at Google Scholar · View at Scopus
  118. M. A. Lovell, W. D. Ehmann, S. M. Butler, and W. R. Markesbery, “Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease,” Neurology, vol. 45, no. 8, pp. 1594–1601, 1995. View at Publisher · View at Google Scholar · View at Scopus
  119. K. V. Subbarao, J. S. Richardson, and L. C. Ang, “Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro,” Journal of Neurochemistry, vol. 55, no. 1, pp. 342–345, 1990. View at Publisher · View at Google Scholar · View at Scopus
  120. I. T. Lott, “Antioxidants in Down syndrome,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, vol. 1822, no. 5, pp. 657–663, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. L. Whiley, A. Sen, J. Heaton et al., “Evidence of altered phosphatidylcholine metabolism in Alzheimer's disease,” Neurobiology of Aging, vol. 35, no. 2, pp. 271–278, 2014. View at Publisher · View at Google Scholar · View at Scopus
  122. R. J. Mark, M. A. Lovell, W. R. Markesbery, K. Uchida, and M. P. Mattson, “A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide,” Journal of Neurochemistry, vol. 68, no. 1, pp. 255–264, 1997. View at Google Scholar · View at Scopus
  123. A. Klugman, D. P. Naughton, M. Isaac, I. Shah, A. Petroczi, and N. Tabet, “Antioxidant enzymatic activities in alzheimer's disease: the relationship to acetylcholinesterase inhibitors,” Journal of Alzheimer's Disease, vol. 30, no. 3, pp. 467–474, 2012. View at Publisher · View at Google Scholar · View at Scopus
  124. L. Balazs and M. Leon, “Evidence of an oxidative challenge in the Alzheimer's brain,” Neurochemical Research, vol. 19, no. 9, pp. 1131–1137, 1994. View at Publisher · View at Google Scholar · View at Scopus
  125. R. A. Omar, Y.-J. Chyan, A. C. Andorn, B. Poeggeler, N. K. Robakis, and M. A. Pappolla, “Increased expression but reduced activity of antioxidant enzymes in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 1, no. 3, pp. 139–145, 1999. View at Google Scholar · View at Scopus
  126. N. Sasaki, S. Toki, H. Chowei et al., “Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer's disease,” Brain Research, vol. 888, no. 2, pp. 256–262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Verma and M. Vinayak, “Effect of Terminalia arjuna on antioxidant defense system in cancer,” Molecular Biology Reports, vol. 36, no. 1, pp. 159–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Khan, H. Nazar, S. M. Sabir et al., “Antioxidant activity and inhibitory effect of some commonly used medicinal plants against lipid per-oxidation in mice brain,” African Journal of Traditional, Complementary and Alternative Medicines, vol. 11, no. 5, pp. 83–90, 2014. View at Publisher · View at Google Scholar · View at Scopus
  129. M. K. Gautam, S. Goel, R. R. Ghatule, A. Singh, G. Nath, and R. K. Goel, “Curative effect of Terminalia chebula extract on acetic acid-induced experimental colitis: role of antioxidants, free radicals and acute inflammatory marker,” Inflammopharmacology, vol. 21, no. 5, pp. 377–383, 2013. View at Publisher · View at Google Scholar · View at Scopus
  130. C. L. Chang and C. S. Lin, “Phytochemical composition, antioxidant activity, and neuroprotective effect of Terminalia chebula Retzius extracts,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 125247, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  131. J. H. Park, H. S. Joo, K.-Y. Yoo et al., “Extract from Terminalia chebula seeds protect against experimental ischemic neuronal damage via maintaining SODs and BDNF levels,” Neurochemical Research, vol. 36, no. 11, pp. 2043–2050, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. M. Na, K. Bae, S. Sik Kang et al., “Cytoprotective effect on oxidative stress and inhibitory effect on cellular aging of Terminalia chebula fruit,” Phytotherapy Research, vol. 18, no. 9, pp. 737–741, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. R. Mahesh, S. Bhuvana, and V. M. H. Begum, “Effect of Terminalia chebula aqueous extract on oxidative stress and antioxidant status in the liver and kidney of young and aged rats,” Cell Biochemistry and Function, vol. 27, no. 6, pp. 358–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. H.-Y. Cheng, T.-C. Lin, K.-H. Yu, C.-M. Yang, and C.-C. Lin, “Antioxidant and free radical scavenging activities of Terminalia chebula,” Biological and Pharmaceutical Bulletin, vol. 26, no. 9, pp. 1331–1335, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Sarkar and N. Mandal, “Hydroalcoholic extracts of Indian medicinal plants can help in amelioration from oxidative stress through antioxidant properties,” Journal of Complementary and Integrative Medicine, vol. 9, no. 1, pp. 1–9, 2012. View at Google Scholar · View at Scopus
  136. A. Manosroi, P. Jantrawut, T. Akihisa, W. Manosroi, and J. Manosroi, “In vitro anti-aging activities of Terminalia chebula gall extract,” Pharmaceutical Biology, vol. 48, no. 4, pp. 469–481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. K. W. Lee, Y. J. Kim, D.-O. Kim, H. J. Lee, and C. Y. Lee, “Major phenolics in apple and their contribution to the total antioxidant capacity,” Journal of Agricultural and Food Chemistry, vol. 51, no. 22, pp. 6516–6520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  138. S. C. Mondal, P. Singh, B. Kumar, S. K. Singh, S. K. Gupta, and A. Verma, “Ageing and potential anti-aging phytochemicals: an overview,” World Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 1, pp. 426–454, 2014. View at Google Scholar