Table of Contents Author Guidelines Submit a Manuscript
Anesthesiology Research and Practice
Volume 2012, Article ID 180124, 10 pages
http://dx.doi.org/10.1155/2012/180124
Research Article

Lasting Developmental Effects of Neonatal Fentanyl Exposure in Preweanling Rats

1Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
2Department of Anesthesiology, São Teotónio Hospital, EPE, 3504-509 Viseu, Portugal
3Pediatric Surgery Department, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, EPE, 3000-602 Coimbra, Portugal

Received 31 July 2011; Accepted 13 August 2011

Academic Editor: Andrea Trescot

Copyright © 2012 Dora Catré et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Lasky, F. R. Ernst, J. Greenspan, S. Wang, and L. Gonzalez, “Estimating pediatric inpatient medication use in the United States,” Pharmacoepidemiology and Drug Safety, vol. 20, no. 1, pp. 76–82, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. B. Hsu and T. Brazelton, “Off-label medication use in an academic hospital pediatric critical care unit,” Wisconsin Medical Journal, vol. 108, no. 7, pp. 343–348, 2009. View at Google Scholar · View at Scopus
  3. A. N. Naguib, P. Winch, L. Schwartz et al., “Anesthetic management of the hybrid stage 1 procedure for hypoplastic left heart syndrome (HLHS),” Paediatric Anaesthesia, vol. 20, no. 1, pp. 38–46, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. D. Tobias, “Sedation and analgesia in the pediatric intensive care unit,” Pediatric Annals, vol. 34, no. 8, pp. 636–645, 2005. View at Google Scholar · View at Scopus
  5. J. G. Klamt, W. V. A. de Vicente, L. V. Garcia, and C. A. Ferreira, “Effects of dexmedetomidine-fentanyl infusion on blood pressure and heart rate during cardiac surgery in children,” Anesthesiology Research and Practice, vol. 2010, Article ID 869049, 7 pages, 2010. View at Publisher · View at Google Scholar · View at PubMed
  6. M. Palot, H. Visseaux, and C. Botmans, “Conduction anesthesia and the newborn infant,” Cahiers d'Anesthesiologie, vol. 43, no. 6, pp. 547–553, 1995. View at Google Scholar
  7. T. R. Okon and M. L. George, “Fentanyl-induced neurotoxicity and paradoxic pain,” Journal of Pain and Symptom Management, vol. 35, no. 3, pp. 327–333, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. W. A. Kofke, R. H. Garman, R. L. Stiller, M. E. Rose, and R. Garman, “Opioid neurotoxicity: fentanyl dose-response effects in rats,” Anesthesia and Analgesia, vol. 83, no. 6, pp. 1298–1306, 1996. View at Google Scholar · View at Scopus
  9. W. A. Kofke, R. H. Garman, R. Garman, and M. E. Rose, “Opioid neurotoxicity: fentanyl-induced exacerbation of cerebral ischemia in rats,” Brain Research, vol. 818, no. 2, pp. 326–334, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. E. Bailey, E. Campagna, and R. C. Dart, “RADARS System Poison Center Investigators. The underrecognized toll of prescription opioid abuse on young children,” Annals of Emergency Medicine, vol. 53, no. 4, pp. 419–424, 2009. View at Google Scholar
  11. T. T. Levin, M. H. Bakr, and T. Nikolova, “Case report: delirium due to a diltiazem-fentanyl CYP3A4 drug interaction,” General Hospital Psychiatry, vol. 32, no. 6, pp. 648.e9–648.e10, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. E. H. Sinz, W. A. Kofke, and R. H. Garman, “Phenytoin, midazolam, and naloxone protect against fentanyl-induced brain damage in rats,” Anesthesia and Analgesia, vol. 91, no. 6, pp. 1443–1449, 2000. View at Google Scholar · View at Scopus
  13. Institute of Laboratory Animal Research, Commission on Life Sciences, and National Research Council, Guide for the Care and Use of Laboratory Animals, The National Academies Press, Washington, DC, USA, 1996.
  14. T. J. Brennan, E. P. Vandermeulen, and G. F. Gebhart, “Characterization of a rat model of incisional pain,” Pain, vol. 64, no. 3, pp. 493–501, 1996. View at Publisher · View at Google Scholar
  15. K. Wallace, S. Veerisetty, I. Paul, W. May, J. J. Miguel-Hidalgo, and W. Bennett, “Prenatal infection decreases calbindin, decreases purkinje cell volume and density and produces long-term motor deficits in Sprague-Dawley rats,” Developmental Neuroscience, vol. 32, no. 4, pp. 302–312, 2010. View at Publisher · View at Google Scholar · View at PubMed
  16. L. W. Fan, R. F. Chen, H. J. Mitchell et al., “α-Phenyl-n-tert-butyl-nitrone attenuates lipopolysaccharide-induced brain injury and improves neurological reflexes and early sensorimotor behavioral performance in juvenile rats,” Journal of Neuroscience Research, vol. 86, no. 16, pp. 3536–3547, 2008. View at Publisher · View at Google Scholar · View at PubMed
  17. Y. Silberman, O. J. Ariwodola, A. M. Chappell, J. T. Yorgason, and J. L. Weiner, “Lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the anxiolytic effects of β3 adrenoceptor activation,” Neuropsychopharmacology, vol. 35, no. 9, pp. 1886–1896, 2010. View at Publisher · View at Google Scholar · View at PubMed
  18. J. A. Able, G. A. Gudelsky, C. V. Vorhees, and M. T. Williams, “3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory,” Biological Psychiatry, vol. 59, no. 12, pp. 1219–1226, 2006. View at Publisher · View at Google Scholar · View at PubMed
  19. C. A. Vidair, “Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat: extrapolation to the human,” Toxicology and Applied Pharmacology, vol. 196, no. 2, pp. 287–302, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. T. J. Martin, N. L. Buechler, W. Kahn, J. C. Crews, and J. C. Eisenach, “Effects of laparotomy on spontaneous exploratory activity and conditioned operant responding in the rat: a model for postoperative pain,” Anesthesiology, vol. 101, no. 1, pp. 191–203, 2004. View at Publisher · View at Google Scholar
  21. P. K. Zahn, K. A. Sluka, and T. J. Brennan, “Excitatory amino acid release in the spinal cord caused by plantar incision in the rat,” Pain, vol. 100, no. 1-2, pp. 65–76, 2002. View at Publisher · View at Google Scholar
  22. S. R. Thornton and F. L. Smith, “Characterization of neonatal rat fentanyl tolerance and dependence,” Journal of Pharmacology and Experimental Therapeutics, vol. 281, no. 1, pp. 514–521, 1997. View at Google Scholar
  23. S. Trojan, M. Langmeier, D. Maresová, J. Mourek, and J. Pokorný, “Plasticity of the brain in neuroontogenesis,” Prague Medical Report, vol. 105, no. 2, pp. 97–110, 2004. View at Google Scholar
  24. H. Zheng, Y. Zeng, J. Chu, A. Y. Kam, H. H. Loh, and P. Y. Law, “Modulations of NeuroD activity contribute to the differential effects of morphine and fentanyl on dendritic spine stability,” Journal of Neuroscience, vol. 30, no. 24, pp. 8102–8110, 2010. View at Publisher · View at Google Scholar · View at PubMed
  25. C. Barkus, S. B. McHugh, R. Sprengel, P. H. Seeburg, J. N. Rawlins, and D. M. Bannerman, “Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion,” European Journal of Pharmacology, vol. 626, no. 1, pp. 49–56, 2010. View at Publisher · View at Google Scholar · View at PubMed
  26. V. Laudenbach, G. Calo, R. Guerrini et al., “Nociceptin/orphanin FQ exacerbates excitotoxic whitematter lesions in the murine neonatal brain,” Journal of Clinical Investigation, vol. 107, no. 4, pp. 457–466, 2001. View at Google Scholar
  27. K. J. Anand, S. Garg, C. R. Rovnaghi, U. Narsinghani, A. T. Bhutta, and R. W. Hall, “Ketamine reduces the cell death following inflammatory pain in newborn rat brain,” Pediatric Research, vol. 62, no. 3, pp. 283–290, 2007. View at Publisher · View at Google Scholar · View at PubMed
  28. S. R. Hays and J. K. Deshpande, “Newly postulated neurodevelopmental risks of pediatric anesthesia,” Current Neurology and Neuroscience Reports, vol. 11, no. 2, pp. 205–210, 2011. View at Publisher · View at Google Scholar · View at PubMed