Table of Contents Author Guidelines Submit a Manuscript
Anesthesiology Research and Practice
Volume 2012, Article ID 989487, 13 pages
http://dx.doi.org/10.1155/2012/989487
Review Article

Brain Temperature: Physiology and Pathophysiology after Brain Injury

Department of Anesthesia and Critical Care, University Hospital of Toulouse, University Paul Sabatier, Toulouse, France

Received 1 August 2012; Revised 9 November 2012; Accepted 12 December 2012

Academic Editor: Oliver Bandschapp

Copyright © 2012 Ségolène Mrozek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Shigemori, T. Abe, T. Aruga et al., “Guidelines for the Management of Severe Head Injury, 2nd edition guidelines from the Guidelines Committee on the Management of Severe Head Injury, the Japan Society of Neurotraumatology,” Neurologia Medico-Chirurgica, vol. 52, no. 1, pp. 1–30, 2012. View at Google Scholar
  2. C. J. Cairns and P. J. Andrews, “Management of hyperthermia in traumatic brain injury,” Current Opinion in Critical Care, vol. 8, no. 2, pp. 106–110, 2002. View at Google Scholar
  3. A. Fernandez, J. M. Schmidt, J. Claassen et al., “Fever after subarachnoid hemorrhage: risk factors and impact on outcome,” Neurology, vol. 68, no. 13, pp. 1013–1019, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. Greer, S. E. Funk, N. L. Reaven, M. Ouzounelli, and G. C. Uman, “Impact of fever on outcome in patients with stroke and neurologic injury: a comprehensive meta-analysis,” Stroke, vol. 39, no. 11, pp. 3029–3035, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, Garland Science, 4th edition, 2002.
  6. C. Jessen, “Selective brain cooling in mammals and birds,” Japanese Journal of Physiology, vol. 51, no. 3, pp. 291–301, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Baker, “Brain cooling in endotherms in heat and exercise,” Annual Review of Physiology, vol. 44, pp. 85–96, 1982. View at Publisher · View at Google Scholar
  8. M. Cabanac and H. Brinnel, “Blood flow in the emissary veins of the human head during hyperthermia,” European Journal of Applied Physiology and Occupational Physiology, vol. 54, no. 2, pp. 172–176, 1985. View at Google Scholar · View at Scopus
  9. W. Zenker and S. Kubik, “Brain cooling in humans—anatomical considerations,” Anatomy and Embryology, vol. 193, no. 1, pp. 1–13, 1996. View at Google Scholar · View at Scopus
  10. Z. Mariak, M. D. White, J. Lewko, T. Lyson, and P. Piekarski, “Direct cooling of the human brain by heat loss from the upper respiratory tract,” Journal of Applied Physiology, vol. 87, no. 5, pp. 1609–1613, 1999. View at Google Scholar · View at Scopus
  11. D. I. Sessler, “Perioperative heat balance,” Anesthesiology, vol. 92, no. 2, pp. 578–596, 2000. View at Google Scholar
  12. C. B. Saper, J. Lu, T. C. Chou, and J. Gooley, “The hypothalamic integrator for circadian rhythms,” Trends in Neurosciences, vol. 28, no. 3, pp. 152–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. T. Hammel, D. C. Jackson, J. A. Stolwijk, J. D. Hardy, and S. B. Stromme, “Temperature regulation by hypothalamic proportional control with an adjustable set point,” Journal of Applied Physiology, vol. 18, pp. 1146–1154, 1963. View at Google Scholar · View at Scopus
  14. J. A. Boulant, “Neuronal basis of Hammel's model for set-point thermoregulation,” Journal of Applied Physiology, vol. 100, no. 4, pp. 1347–1354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Cabanac, “Adjustable set point: to honor Harold T. Hammel,” Journal of Applied Physiology, vol. 100, no. 4, pp. 1338–1346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. I. B. Mekjavic, C. J. Sundberg, and D. Linnarsson, “Core temperature ‘null zone’,” Journal of Applied Physiology, vol. 71, no. 4, pp. 1289–1295, 1991. View at Google Scholar · View at Scopus
  17. J. Bligh, “A theoretical consideration of the means whereby the mammalian core temperature is defended at a null zone,” Journal of Applied Physiology, vol. 100, no. 4, pp. 1332–1337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Sokoloff, “Energetics of functional activation in neural tissues,” Neurochemical Research, vol. 24, no. 2, pp. 321–329, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. R. M. Abrams, J. A. J. Stolwijk, H. T. Hammel, and H. Graichen, “Brain temperature and brain blood flow in unanesthetized rats,” Life Sciences, vol. 4, no. 24, pp. 2399–2410, 1965. View at Google Scholar · View at Scopus
  20. J. M. Delgado and T. Hanai, “Intracerebral temperatures in free-moving cats,” The American Journal of Physiology, vol. 211, no. 3, pp. 755–769, 1966. View at Google Scholar · View at Scopus
  21. E. A. Kiyatkin and P. L. Brown, “Brain and body temperature homeostasis during sodium pentobarbital anesthesia with and without body warming in rats,” Physiology and Behavior, vol. 84, no. 4, pp. 563–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. E. A. Kiyatkin, P. L. Brown, and R. A. Wise, “Brain temperature fluctuation: a reflection of functional neural activation,” European Journal of Neuroscience, vol. 16, no. 1, pp. 164–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Zhu, D. Nehra, J. J. H. Ackerman, and D. A. Yablonskiy, “On the role of anesthesia on the body/brain temperature differential in rats,” Journal of Thermal Biology, vol. 29, no. 7-8, pp. 599–603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. C. Cork, R. W. Vaughan, and L. S. Humphrey, “Precision and accuracy of intraoperative temperature monitoring,” Anesthesia & Analgesia, vol. 62, no. 2, pp. 211–214, 1983. View at Google Scholar
  25. S. Rossi, E. Roncati Zanier, I. Mauri, A. Columbo, and N. Stocchetti, “Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage,” Journal of Neurology Neurosurgery and Psychiatry, vol. 71, no. 4, pp. 448–454, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. L. McIlvoy, “Comparison of brain temperature to core temperature: a review of the literature,” Journal of Neuroscience Nursing, vol. 36, no. 1, pp. 23–31, 2004. View at Google Scholar
  27. P. Mellergård, “Intracerebral temperature in neurosurgical patients: intracerebral temperature gradients and relationships to consciousness level,” Surgical Neurology, vol. 43, no. 1, pp. 91–95, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. J. G. Stone, R. R. Goodman, K. Z. Baker, C. J. Baker, and R. A. Solomon, “Direct intraoperative measurement of human brain temperature,” Neurosurgery, vol. 41, no. 1, pp. 20–24, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Alessandri, B. M. Hoelper, R. Behr, and O. Kempski, “Accuracy and stability of temperature probes for intracranial application,” Journal of Neuroscience Methods, vol. 139, no. 2, pp. 161–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. E. B. Cady, P. C. D'Souza, J. Penrice, and A. Lorek, “The estimation of local brain temperature by in vivo 1H magnetic resonance spectroscopy,” Magnetic Resonance in Medicine, vol. 33, no. 6, pp. 862–867, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. R. J. T. Corbett, A. R. Laptook, G. Tollefsbol, and B. Kim, “Validation of a noninvasive method to measure brain temperature in vivo using 1H NMR spectroscopy,” Journal of Neurochemistry, vol. 64, no. 3, pp. 1224–1230, 1995. View at Google Scholar · View at Scopus
  32. K. Kuroda, N. Takei, R. V. Mulkern et al., “Feasibility of internally referenced brain temperature imaging with a metabolite signal,” Magnetic Resonance in Medical Sciences, vol. 2, no. 1, pp. 17–22, 2003. View at Google Scholar · View at Scopus
  33. B. Karaszewski, J. M. Wardlaw, I. Marshall et al., “Measurement of brain temperature with magnetic resonance spectroscopy in acute ischemic stroke,” Annals of Neurology, vol. 60, no. 4, pp. 438–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. D. Michenfelder and J. H. Milde, “The relationship among canine brain temperature, metabolism, and function during hypothermia,” Anesthesiology, vol. 75, no. 1, pp. 130–136, 1991. View at Google Scholar · View at Scopus
  35. D. S. Warner, C. McFarlane, M. M. Todd, P. Ludwig, and A. M. McAllister, “Sevoflurane and halothane reduce focal ischemic brain damage in the rat: possible influence on thermoregulation,” Anesthesiology, vol. 79, no. 5, pp. 985–992, 1993. View at Google Scholar · View at Scopus
  36. W. L. Lanier, “Cerebral metabolic rate and hypothermia: their relationship with ischemic neurologic injury,” Journal of Neurosurgical Anesthesiology, vol. 7, no. 3, pp. 216–221, 1995. View at Google Scholar · View at Scopus
  37. H. L. Rosomoff and D. A. Holaday, “Cerebral blood flow and cerebral oxygen consumption during hypothermia,” The American Journal of Physiology, vol. 179, no. 1, pp. 85–88, 1954. View at Google Scholar · View at Scopus
  38. J. D. Michenfelder and J. H. Milde, “The effect of profound levels of hypothermia (below 14°C) on canine cerebral metabolism,” Journal of Cerebral Blood Flow and Metabolism, vol. 12, no. 5, pp. 877–880, 1992. View at Google Scholar · View at Scopus
  39. T. C. Glenn, D. F. Kelly, W. J. Boscardin et al., “Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 10, pp. 1239–1250, 2003. View at Google Scholar · View at Scopus
  40. M. Volgushev, T. R. Vidyasagar, M. Chistiakova, and U. T. Eysel, “Synaptic transmission in the neocortex during reversible cooling,” Neuroscience, vol. 98, no. 1, pp. 9–22, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Volgushev, I. Kudryashov, M. Chistiakova, M. Mukovski, J. Niesmann, and U. T. Eysel, “Probability of transmitter release at neocortical synapses at different temperatures,” Journal of Neurophysiology, vol. 92, no. 1, pp. 212–220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. A. D. Rosen, “Temperature modulation of calcium channel function in GH3 cells,” American Journal of Physiology, vol. 271, no. 3, part 1, pp. C863–C868, 1996. View at Google Scholar · View at Scopus
  43. A. D. Rosen, “Nonlinear temperature modulation of sodium channel kinetics in GH3 cells,” Biochimica et Biophysica Acta, vol. 1511, no. 2, pp. 391–396, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Suehiro, H. Fujisawa, H. Ito, T. Ishikawa, and T. Maekawa, “Brain temperature modifies glutamate neurotoxicity in vivo,” Journal of Neurotrauma, vol. 16, no. 4, pp. 285–297, 1999. View at Google Scholar · View at Scopus
  45. W. D. Dietrich, “The importance of brain temperature in cerebral injury,” Journal of Neurotrauma, vol. 9, supplement 2, pp. S475–S485, 1992. View at Google Scholar · View at Scopus
  46. J. Sahuquillo and A. Vilalta, “Cooling the injured brain: how does moderate hypothermia influence the pathophysiology of traumatic brain injury,” Current Pharmaceutical Design, vol. 13, no. 22, pp. 2310–2322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. L. L. A. Bisschops, C. W. E. Hoedemaekers, K. S. Simons, and J. G. van der Hoeven, “Preserved metabolic coupling and cerebrovascular reactivity during mild hypothermia after cardiac arrest,” Critical Care Medicine, vol. 38, no. 7, pp. 1542–1547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. L. Clifton, E. R. Miller, S. C. Choi et al., “Lack of effect of induction of hypothermia after acute brain injury,” The New England Journal of Medicine, vol. 344, no. 8, pp. 556–563, 2001. View at Google Scholar
  49. M. Sakoh and A. Gjedde, “Neuroprotection in hypothermia linked to redistribution of oxygen in brain,” American Journal of Physiology, vol. 285, no. 1, pp. H17–H25, 2003. View at Google Scholar · View at Scopus
  50. L. L. Bisschops, J. G. van der Hoeven, and C. W. Hoedemaekers, “Effects of prolonged mild hypothermia on cerebral blood flow after cardiac arrest,” Critical Care Medicine, vol. 40, no. 8, pp. 2362–2367, 2012. View at Google Scholar
  51. B. Tremey and B. Vigué, “Changes in blood gases with temperature: Implications for clinical practice,” Annales Francaises d'Anesthesie et de Reanimation, vol. 23, no. 5, pp. 474–481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. A. K. Ream, B. A. Reitz, and G. Silverberg, “Temperature correction of PCO2 and pH in estimating acid-base status: an example for the emperor's new clothes?” Anesthesiology, vol. 56, no. 1, pp. 41–44, 1982. View at Google Scholar · View at Scopus
  53. B. Vigué, C. Ract, N. Zlotine, P. E. Leblanc, K. Samii, and B. Bissonnette, “Relationship between intracranial pressure, mild hypothermia and temperature-corrected PaCO2 in patients with traumatic brain injury,” Intensive Care Medicine, vol. 26, no. 6, pp. 722–728, 2000. View at Google Scholar · View at Scopus
  54. K. Chatzipanteli, O. F. Alonso, S. Kraydieh, and W. D. Dietrich, “Importance of posttraumatic hypothermia and hyperthermia on the inflammatory response after fluid percussion brain injury: biochemical and immunocytochemical studies,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 3, pp. 531–542, 2000. View at Google Scholar · View at Scopus
  55. H. S. Sharma and P. J. Hoopes, “Hyperthermia induced pathophysiology of the central nervous system,” International Journal of Hyperthermia, vol. 19, no. 3, pp. 325–354, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. W. D. Dietrich, O. Alonso, M. Halley, and R. Busto, “Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: a light and electron microscopic study in rats,” Neurosurgery, vol. 38, no. 3, pp. 533–541, 1996. View at Publisher · View at Google Scholar · View at Scopus
  57. R. A. Henker, S. D. Brown, and D. W. Marion, “Comparison of brain temperature with bladder and rectal temperatures in adults with severe head injury,” Neurosurgery, vol. 42, no. 5, pp. 1071–1075, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. K. H. Polderman, “Induced hypothermia and fever control for prevention and treatment of neurological injuries,” The Lancet, vol. 371, no. 9628, pp. 1955–1969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Bruder, L. Velly, and J. L. Codaccioni, “Hypothermia for intracranial hypertension,” Annales Francaises d'Anesthesie et de Reanimation, vol. 28, no. 4, pp. 365–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. C. S. Rumana, S. P. Gopinath, M. Uzura, A. B. Valadka, and C. S. Robertson, “Brain temperature exceeds systemic temperature in head-injured patients,” Critical Care Medicine, vol. 26, no. 3, pp. 562–567, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. M. R. Crompton, “Hypothalamic lesions following closed head injury,” Brain, vol. 94, no. 1, pp. 165–172, 1971. View at Publisher · View at Google Scholar · View at Scopus
  62. J. C. Goodman, A. B. Valadka, S. P. Gopinath, M. Uzura, and C. S. Robertson, “Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis,” Critical Care Medicine, vol. 27, no. 9, pp. 1965–1973, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. D. W. Marion, J. Darby, and H. Yonas, “Acute regional cerebral blood flow changes caused by severe head injuries,” Journal of Neurosurgery, vol. 74, no. 3, pp. 407–414, 1991. View at Google Scholar · View at Scopus
  64. J. R. Goss, S. D. Styren, P. D. Miller et al., “Hypothermia attenuates the normal increase in interleukin 1β RNA and nerve growth factor following traumatic brain injury in the rat,” Journal of Neurotrauma, vol. 12, no. 2, pp. 159–167, 1995. View at Google Scholar · View at Scopus
  65. J. Soukup, A. Zauner, E. M. R. Doppenberg et al., “The importance of brain temperature in patients after severe head injury: relationship to intracranial pressure, cerebral perfusion pressure, cerebral blood flow, and outcome,” Journal of Neurotrauma, vol. 19, no. 5, pp. 559–571, 2002. View at Google Scholar · View at Scopus
  66. K. N. Fountas, E. Z. Kapsalaki, C. H. Feltes et al., “Disassociation between intracranial and systemic temperatures as an early sign of brain death,” Journal of Neurosurgical Anesthesiology, vol. 15, no. 2, pp. 87–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. A. B. Young, L. G. Ott, D. Beard, R. J. Dempsey, P. A. Tibbs, and C. J. McClain, “The acute-phase response of the brain-injured patient,” Journal of Neurosurgery, vol. 69, no. 3, pp. 375–380, 1988. View at Google Scholar · View at Scopus
  68. C. Commichau, N. Scarmeas, and S. A. Mayer, “Risk factors for fever in the neurologic intensive care unit,” Neurology, vol. 60, no. 5, pp. 837–841, 2003. View at Google Scholar · View at Scopus
  69. N. Stocchetti, S. Rossi, E. R. Zanier, A. Colombo, L. Beretta, and G. Citerio, “Pyrexia in head-injured patients admitted to intensive care,” Intensive Care Medicine, vol. 28, no. 11, pp. 1555–1562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. P. A. Jones, P. J. D. Andrews, S. Midgley et al., “Measuring the burden of secondary insults in head-injured patients during intensive care,” Journal of Neurosurgical Anesthesiology, vol. 6, no. 1, pp. 4–14, 1994. View at Google Scholar · View at Scopus
  71. J. Y. Jiang, G. Y. Gao, W. P. Li, M. K. Yu, and C. Zhu, “Early indicators of prognosis in 846 cases of severe traumatic brain injury,” Journal of Neurotrauma, vol. 19, no. 7, pp. 869–874, 2002. View at Google Scholar · View at Scopus
  72. C. Childs, A. Vail, P. Leach, T. Rainey, R. Protheroe, and A. King, “Brain temperature and outcome after severe traumatic brain injury,” Neurocritical Care, vol. 5, no. 1, pp. 10–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. R. H. Sacho, A. Vail, T. Rainey, A. T. King, and C. Childs, “The effect of spontaneous alterations in brain temperature on outcome: a prospective observational cohort study in patients with severe traumatic brain injury,” Journal of Neurotrauma, vol. 27, no. 12, pp. 2157–2164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Busto, W. D. Dietrich, M. Globus, I. Valdes, P. Scheinberg, and M. D. Ginsberg, “Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 7, no. 6, pp. 729–738, 1987. View at Google Scholar · View at Scopus
  75. M. D. Ginsberg and R. Busto, “Combating hyperthermia in acute stroke: a significant clinical concern,” Stroke, vol. 29, no. 2, pp. 529–534, 1998. View at Google Scholar · View at Scopus
  76. D. W. Busija, C. W. Leffler, and M. Pourcyrous, “Hyperthermia increases cerebral metabolic rate and blood flow in neonatal pigs,” American Journal of Physiology, vol. 255, no. 2, part 2, pp. H343–H346, 1988. View at Google Scholar · View at Scopus
  77. G. A. Mickley, B. L. Cobb, and S. T. Farrell, “Brain hyperthermia alters local cerebral glucose utilization: a comparison of hyperthermic agents,” International Journal of Hyperthermia, vol. 13, no. 1, pp. 99–114, 1997. View at Google Scholar · View at Scopus
  78. N. Stocchetti, A. Protti, M. Lattuada et al., “Impact of pyrexia on neurochemistry and cerebral oxygenation after acute brain injury,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 8, pp. 1135–1139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Fay, “Observations on generalized refrigeration in cases of severe cerebral trauma,” Research Publications—Association for Research in Nervous and Mental Disease, no. 24, pp. 611–619, 1943. View at Google Scholar
  80. D. I. Sessler, “Complications and treatment of mild hypothermia,” Anesthesiology, vol. 95, no. 2, pp. 531–543, 2001. View at Google Scholar
  81. L. Liu and M. A. Yenari, “Therapeutic hypothermia: neuroprotective mechanisms,” Frontiers in Bioscience, vol. 12, no. 3, pp. 816–825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Varon and P. Acosta, “Therapeutic hypothermia: past, present, and future,” Chest, vol. 133, no. 5, pp. 1267–1274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Sadaka and C. Veremakis, “Therapeutic hypothermia for the management of intracranial hypertension in severe traumatic brain injury: a systematic review,” Brain Injury, vol. 26, no. 7-8, pp. 899–908, 2012. View at Google Scholar
  84. J. Y. Jiang, B. G. Lyeth, M. Z. Kapasi, L. W. Jenkins, and J. T. Povlishock, “Moderate hypothermia reduces blood-brain barrier disruption following traumatic brain injury in the rat,” Acta Neuropathologica, vol. 84, no. 5, pp. 495–500, 1992. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Miyazawa, A. Tamura, S. Fukui, and K. A. Hossmann, “Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies,” Neurological Research, vol. 25, no. 5, pp. 457–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. T. S. Olsen, U. J. Weber, and L. P. Kammersgaard, “Therapeutic hypothermia for acute stroke,” Lancet Neurology, vol. 2, no. 7, pp. 410–416, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. H. B. van der Worp, M. R. MacLeod, and R. Kollmar, “Therapeutic hypothermia for acute ischemic stroke: ready to start large randomized trials,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 6, pp. 1079–1093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. H. M. Bramlett, E. J. Green, W. D. Dietrich, R. Busto, M. Y. T. Globus, and M. D. Ginsberg, “Posttraumatic brain hypothermia provides protection from sensorimotor and cognitive behavioral deficits,” Journal of Neurotrauma, vol. 12, no. 3, pp. 289–298, 1995. View at Google Scholar · View at Scopus
  89. W. D. Dietrich, C. M. Atkins, and H. M. Bramlett, “Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia,” Journal of Neurotrauma, vol. 26, no. 3, pp. 301–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. K. H. Polderman, R. Tjong Tjin Joe, S. M. Peerdeman, W. P. Vandertop, and A. R. J. Girbes, “Effects of therapeutic hypothermia on intracranial pressure and outcome in patients with severe head injury,” Intensive Care Medicine, vol. 28, no. 11, pp. 1563–1573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. D. W. Marion, L. E. Penrod, S. F. Kelsey et al., “Treatment of traumatic brain injury with moderate hypothermia,” The New England Journal of Medicine, vol. 336, no. 8, pp. 540–546, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. G. L. Clifton, S. Allen, P. Barrodale et al., “A phase II study of moderate hypothermia in severe brain injury,” Journal of Neurotrauma, vol. 10, no. 3, pp. 263–271, 1993. View at Google Scholar · View at Scopus
  93. D. W. Marion, W. D. Obrist, P. M. Carlier, L. E. Penrod, and J. M. Darby, “The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report,” Journal of Neurosurgery, vol. 79, no. 3, pp. 354–362, 1993. View at Google Scholar · View at Scopus
  94. K. Peterson, S. Carson, and N. Carney, “Hypothermia treatment for traumatic brain injury: a systematic review and meta-analysis,” Journal of Neurotrauma, vol. 25, no. 1, pp. 62–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. S. L. Bratton, R. M. Chestnut, J. Ghajar et al., “Guidelines for the management of severe traumatic brain injury. III. Prophylactic hypothermia,” Journal of Neurotrauma, supplement 1, pp. S21–S25, 2007. View at Google Scholar
  96. E. D. Stanley, G. G. Jackson, and C. Panusarn, “Increased virus shedding with aspirin treatment of rhinovirus infection,” Journal of the American Medical Association, vol. 231, no. 12, pp. 1248–1251, 1975. View at Publisher · View at Google Scholar · View at Scopus
  97. T. F. Doran, C. De Angelis, R. A. Baumgardner, and E. D. Mellits, “Acetaminophen: more harm than good for chickenpox?” Journal of Pediatrics, vol. 114, no. 6, pp. 1045–1048, 1989. View at Google Scholar · View at Scopus
  98. A. Kuikka, A. Sivonen, A. Emelianova, and V. V. Valtonen, “Prognostic factors associated with improved outcome of Escherichia coli bacteremia in a Finnish university hospital,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 16, no. 2, pp. 125–134, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Kuikka and V. V. Valtonen, “Factors associated with improved outcome of Pseudomonas aeruginosa bacteremia in a Finnish university hospital,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 17, no. 10, pp. 701–708, 1998. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Ahkee, L. Srinath, and J. Ramirez, “Community-acquired pneumonia in the elderly: association of mortality with lack of fever and leukocytosis,” Southern Medical Journal, vol. 90, no. 3, pp. 296–298, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Jefferies, M. Weatherall, P. Young, S. Eyers, and R. Beasley, “Systematic review and meta-analysis of the effects of antipyretic medications on mortality in Streptococcus pneumoniae infections,” Postgraduate Medical Journal, vol. 88, no. 1035, pp. 21–27.
  102. P. A. Mackowiak, M. Marling-Cason, and R. L. Cohen, “Effects of temperature on antimicrobial susceptibility of bacteria,” Journal of Infectious Diseases, vol. 145, no. 4, pp. 550–553, 1982. View at Google Scholar · View at Scopus
  103. P. A. Mackowiak, “Direct effects of hyperthermia on pathogenic microorganisms: teleologic implications with regard to fever,” Reviews of Infectious Diseases, vol. 3, no. 3, pp. 508–520, 1981. View at Google Scholar · View at Scopus
  104. C. I. Schulman, N. Namias, J. Doherty et al., “The effect of antipyretic therapy upon outcomes in critically ill patients: a randomized, prospective study,” Surgical Infections, vol. 6, no. 4, pp. 369–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. F. Schortgen, K. Clabault, S. Katsahian et al., “Fever control using external cooling in septic shock: a randomized controlled trial,” American Journal of Respiratory and Critical Care Medicine, vol. 185, no. 10, pp. 1088–1095, 2012. View at Google Scholar
  106. Q. Jiang, A. S. Cross, I. S. Singh, T. T. Chen, R. M. Viscardi, and J. D. Hasday, “Febrile core temperature is essential for optimal host defense in bacterial peritonitis,” Infection and Immunity, vol. 68, no. 3, pp. 1265–1270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Su, D. N. Nam, Z. Wang, Y. Cai, P. Rogiers, and J. L. Vincent, “Fever control in septic shock: beneficial or harmful?” Shock, vol. 23, no. 6, pp. 516–520, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. N. Mongardon, S. Perbet, V. Lemiale et al., “Infectious complications in out-of-hospital cardiac arrest patients in the therapeutic hypothermia era,” Critical Care Medicine, vol. 39, no. 6, pp. 1359–1364, 2011. View at Google Scholar
  109. A. Kurz, D. I. Sessler, and R. Lenhardt, “Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization,” The New England Journal of Medicine, vol. 334, no. 19, pp. 1209–1215, 1996. View at Publisher · View at Google Scholar · View at Scopus
  110. J. I. Suarez, R. W. Tarr, and W. R. Selman, “Aneurysmal subarachnoid hemorrhage,” The New England Journal of Medicine, vol. 354, no. 4, pp. 387–396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. G. F. Prunell, T. Mathiesen, N. A. Svendgaard et al., “Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat,” Neurosurgery, vol. 54, no. 2, pp. 426–437, 2004. View at Google Scholar · View at Scopus
  112. Y. Otawara, K. Ogasawara, Y. Kubo, N. Tomitsuka, A. Ogawa, and M. Suzuki, “Brain and systemic temperature in patients with severe subarachnoid hemorrhage,” Surgical Neurology, vol. 60, no. 2, pp. 159–164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. K. E. Wartenberg, J. M. Schmidt, J. Claassen et al., “Impact of medical complications on outcome after subarachnoid hemorrhage,” Critical Care Medicine, vol. 34, no. 3, pp. 617–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. A. A. Steiner and L. G. S. Branco, “Carbon monoxide is the heme oxygenase product with a pyretic action: evidence for a cGMP signaling pathway,” American Journal of Physiology, vol. 280, no. 2, pp. R448–R457, 2001. View at Google Scholar · View at Scopus
  115. M. M. Kilpatrick, D. W. Lowry, A. D. Firlik, H. Yonas, and D. W. Marion, “Hyperthermia in the neurosurgical intensive care unit,” Neurosurgery, vol. 47, no. 4, pp. 850–855, 2000. View at Google Scholar · View at Scopus
  116. M. M. Todd, B. J. Hindman, W. R. Clarke et al., “Perioperative fever and outcome in surgical patients with aneurysmal subarachnoid hemorrhage,” Neurosurgery, vol. 64, no. 5, pp. 897–908, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. A. A. Rabinstein and K. Sandhu, “Non-infectious fever in the neurological intensive care unit: Incidence, causes and predictors,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 11, pp. 1278–1280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. A. M. Naidech, B. R. Bendok, R. A. Bernstein et al., “Fever burden and functional recovery after subarachnoid hemorrhage,” Neurosurgery, vol. 63, no. 2, pp. 212–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Oddo, S. Frangos, A. Milby et al., “Induced normothermia attenuates cerebral metabolic distress in patients with aneurysmal subarachnoid hemorrhage and refractory fever,” Stroke, vol. 40, no. 5, pp. 1913–1916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. V. Scaravilli, G. Tinchero, and G. Citerio, “Fever management in SAH,” Neurocritical Care, vol. 15, no. 2, pp. 287–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. M. N. Diringer, N. L. Reaven, S. E. Funk, and G. C. Uman, “Elevated body temperature independently contributes to increased length of stay in neurologic intensive care unit patients,” Critical Care Medicine, vol. 32, no. 7, pp. 1489–1495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Oliveira-Filho, M. A. Ezzeddine, A. Z. Segal et al., “Fever in subarachnoid hemorrhage relationship to vasospasm and outcome,” Neurology, vol. 56, no. 10, pp. 1299–1304, 2001. View at Google Scholar · View at Scopus
  123. Y. Yoshimoto, Y. Tanaka, and K. Hoya, “Acute systemic inflammatory response syndrome in subarachnoid hemorrhage,” Stroke, vol. 32, no. 9, pp. 1989–1993, 2001. View at Google Scholar · View at Scopus
  124. L. R. Li, C. You, and B. Chaudhary, “Intraoperative mild hypothermia for postoperative neurological deficits in intracranial aneurysm patients,” Cochrane Database Syst Rev, vol. 2, Article ID CD008445, 2012. View at Google Scholar
  125. E. S. Connolly Jr., A. A. Rabinstein, J. R. Carhuapoma et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association,” Stroke, vol. 43, no. 6, pp. 1711–1737, 2012. View at Google Scholar
  126. M. M. Todd, B. J. Hindman, W. R. Clarke, and J. C. Torner, “Mild intraoperative hypothermia during surgery for intracranial aneurysm,” The New England Journal of Medicine, vol. 352, no. 2, pp. 135–145, 2005. View at Google Scholar
  127. S. W. Anderson, M. M. Todd, B. J. Hindman et al., “Effects of intraoperative hypothermia on neuropsychological outcomes after intracranial aneurysm surgery,” Annals of Neurology, vol. 60, no. 5, pp. 518–527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. S. K. Samra, B. Giordani, A. F. Caveney et al., “Recovery of cognitive function after surgery for aneurysmal subarachnoid hemorrhage,” Stroke, vol. 38, no. 6, pp. 1864–1872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. S. E. Lakhan and F. Pamplona, “Application of mild therapeutic hypothermia on stroke: a systematic review and meta-analysis,” Stroke Research and Treatment, vol. 2012, Article ID 295906, 12 pages, 2012. View at Publisher · View at Google Scholar
  130. C. Xing, K. Arai, E. H. Lo, and M. Hommel, “Pathophysiologic cascades in ischemic stroke,” International Journal of Stroke, vol. 7, no. 5, pp. 378–385, 2012. View at Google Scholar
  131. H. B. van der Worp, E. S. Sena, G. A. Donnan, D. W. Howells, and M. R. Macleod, “Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis,” Brain, vol. 130, no. 12, pp. 3063–3074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Gabay and I. Kushner, “Acute-phase proteins and other systemic responses to inflammation,” The New England Journal of Medicine, no. 6, pp. 448–454, 1999. View at Google Scholar
  133. W. Whiteley, W. L. Chong, A. Sengupta, and P. Sandercock, “Blood markers for the prognosis of ischemic stroke: a systematic review,” Stroke, vol. 40, no. 5, pp. e380–e389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. W. Whiteley, C. Jackson, S. Lewis et al., “Inflammatory markers and poor outcome after stroke: a prospective cohort study and systematic review of interleukin-6,” PLoS Medicine, vol. 6, no. 9, Article ID e1000145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. W. N. Whiteley, R. Thomas, G. Lowe et al., “Do acute phase markers explain body temperature and brain temperature after ischemic stroke?” Neurology, vol. 79, no. 2, pp. 152–158, 2012. View at Google Scholar
  136. A. Faridar, E. M. Bershad, T. Emiru, P. A. Iaizzo, J. I. Suarez, and A. A. Divani, “Therapeutic hypothermia in stroke and traumatic brain injury,” Frontiers in Neurology, vol. 2, article 80, 2011. View at Google Scholar
  137. C. M. Maier, G. H. Sun, D. Cheng, M. A. Yenari, P. H. Chan, and G. K. Steinberg, “Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia,” Neurobiology of Disease, vol. 11, no. 1, pp. 28–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  138. H. Zhang, C. Ren, X. Gao et al., “Hypothermia blocks β-catenin degradation after focal ischemia in rats,” Brain Research, vol. 1198, pp. 182–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. W. J. Nelson and R. Nusse, “Convergence of Wnt, β-Catenin, and Cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. P. W. Huh, L. Belayev, W. Zhao, S. Koch, R. Busto, and M. D. Ginsberg, “Comparative neuroprotective efficacy of prolonged moderate intraischemic and postischemic hypothermia in focal cerebral ischemia,” Journal of Neurosurgery, vol. 92, no. 1, pp. 91–99, 2000. View at Google Scholar · View at Scopus
  141. C. M. Maier, K. V. B. Ahern, M. L. Cheng, J. E. Lee, M. A. Yenari, and G. K. Steinberg, “Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation,” Stroke, vol. 29, no. 10, pp. 2171–2180, 1998. View at Google Scholar · View at Scopus
  142. T. Zgavc, A. G. Ceulemans, S. Sarre, Y. Michotte, and S. Hachimi-Idrissi, “Experimental and clinical use of therapeutic hypothermia for ischemic stroke: opportunities and limitations,” Stroke Research and Treatment, vol. 2011, Article ID 689290, 2011. View at Google Scholar
  143. H. Ohta, Y. Terao, Y. Shintani, and Y. Kiyota, “Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia,” Neuroscience Research, vol. 57, no. 3, pp. 424–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. C. M. Maier, Guo Huan Sun, D. Kunis, M. A. Yenari, and G. K. Steinberg, “Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size,” Journal of Neurosurgery, vol. 94, no. 1, pp. 90–96, 2001. View at Google Scholar · View at Scopus
  145. C. Berger, F. Xia, M. Köhrmann, and S. Schwab, “Hypothermia in acute stroke-Slow versus fast rewarming. An experimental study in rats,” Experimental Neurology, vol. 204, no. 1, pp. 131–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. L. P. Kammersgaard, H. S. Jørgensen, J. A. Rungby et al., “Admission body temperature predicts long-term mortality after acute stroke: the Copenhagen Stroke Study,” Stroke, vol. 33, no. 7, pp. 1759–1762, 2002. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Reith, H. S. Jørgensen, P. M. Pedersen et al., “Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome,” The Lancet, vol. 347, no. 8999, pp. 422–425, 1996. View at Publisher · View at Google Scholar · View at Scopus
  148. Y. Wang, L. L. Y. Lim, C. Levi, R. F. Heller, and J. Fisher, “Influence of admission body temperature on stroke mortality,” Stroke, vol. 31, no. 2, pp. 404–409, 2000. View at Google Scholar · View at Scopus
  149. R. Kollmar, P. D. Schellinger, T. Steigleder, M. Köhrmann, and S. Schwab, “Ice-cold saline for the induction of mild hypothermia in patients with acute ischemic stroke: a pilot study,” Stroke, vol. 40, no. 5, pp. 1907–1909, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. S. Martin-Schild, H. Hallevi, H. Shaltoni et al., “Combined neuroprotective modalities coupled with thrombolysis in acute ischemic stroke: a pilot study of caffeinol and mild hypothermia,” Journal of Stroke and Cerebrovascular Diseases, vol. 18, no. 2, pp. 86–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. E. Keller, T. Steiner, J. Fandino, S. Schwab, and W. Hacke, “Changes in cerebral blood flow and oxygen metabolism during moderate hypothermia in patients with severe middle cerebral artery infarction,” Neurosurgical Focus, vol. 8, no. 5, article e4, 2000. View at Google Scholar · View at Scopus
  152. S. Schwab, S. Schwarz, M. Spranger, E. Keller, M. Bertram, and W. Hacke, “Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction,” Stroke, vol. 29, no. 12, pp. 2461–2466, 1998. View at Google Scholar · View at Scopus
  153. S. Schwab, S. Schwarz, A. Aschoff, E. Keller, and W. Hacke, “Moderate hypothermia and brain temperature in patients with severe middle cerebral artery infarction,” Acta Neurochirurgica, Supplement, vol. 1998, no. 71, pp. 131–134, 1998. View at Google Scholar · View at Scopus
  154. D. Georgiadis, S. Schwarz, A. Aschoff, and S. Schwab, “Hemicraniectomy and moderate hypothermia in patients with severe ischemic stroke,” Stroke, vol. 33, no. 6, pp. 1584–1588, 2002. View at Publisher · View at Google Scholar · View at Scopus
  155. B. J. Hindman, M. M. Todd, A. W. Gelb et al., “Mild hypothermia as a protective therapy during intracranial aneurysm surgery: a randomized prospective pilot trial,” Neurosurgery, vol. 44, no. 1, pp. 23–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  156. T. M. Hemmen, R. Raman, K. Z. Guluma et al., “Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results,” Stroke, vol. 41, no. 10, pp. 2265–2270, 2010. View at Publisher · View at Google Scholar · View at Scopus