Table of Contents Author Guidelines Submit a Manuscript
Anesthesiology Research and Practice
Volume 2013, Article ID 467326, 8 pages
http://dx.doi.org/10.1155/2013/467326
Research Article

Bicarbonates for the Prevention of Postoperative Renal Failure in Endovascular Aortic Aneurysm Repair: A Randomized Pilot Trial

1Anesthesiology Department, University of Montreal Hospital Centre, 3840 St. Urbain Street, Montréal, QC, Canada H2W 1T8
2Department of Anesthesiology, Maisonneuve-Rosemont Hospital, 5415 Boulevard de l’Assomption, Montréal, QC, Canada H1T 2M4
3Nephrology Department and Guy-Bernier Research Centre, Maisonneuve-Rosemont Hospital, Canada
4Vascular Surgery Department, University of Montreal Hospital Centre, 3840 St. Urbain Street, Montréal, QC, Canada H2W 1T8
5Radiology Department, University of Montreal Hospital Centre, 3840 St. Urbain Street, Montréal, QC, Canada H2W 1T8
6Department of Pharmacology, University of Montreal, 3840 St. Urbain Street, Montréal, QC, Canada H2W 1T8

Received 12 February 2013; Revised 26 April 2013; Accepted 21 May 2013

Academic Editor: Peter Andrews

Copyright © 2013 Véronique Brulotte et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. The EVAR trial participants, “Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurym (EVAR trial 1): randomised controlled trial,” The Lancet, vol. 365, no. 9478, pp. 2179–2186, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. The EVAR trial participants, “Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): randomised controlled trial,” The Lancet, vol. 365, no. 9478, pp. 2187–2192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Schermerhorn, A. J. O'Malley, A. Jhaveri, P. Cotterill, F. Pomposelli, and B. E. Landon, “Endovascular vs. open repair of abdominal aortic aneurysms in the medicare population,” The New England Journal of Medicine, vol. 358, no. 5, pp. 464–474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Parmer and J. P. Carpenter, “Endovascular aneurysm repair with suprarenal vs infrarenal fixation: a study of renal effects,” Journal of Vascular Surgery, vol. 43, no. 1, pp. 19–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. Carpenter, R. M. Fairman, C. F. Barker et al., “Endovascular AAA repair in patients with renal insufficiency: strategies for reducing adverse renal events,” Cardiovascular Surgery, vol. 9, no. 6, pp. 559–564, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Alsac, C. K. Zarins, M. A. Heikkinen et al., “The impact of aortic endografts on renal function,” Journal of Vascular Surgery, vol. 41, no. 6, pp. 926–930, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. N. Moore, M. Lapsley, A. G. Norden et al., “Does N-acetylcysteine prevent contrast-induced nephropathy during endovascular AAA repair? A randomized controlled pilot study,” Journal of Endovascular Therapy, vol. 13, no. 5, pp. 660–666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. Erley, “Does hydration prevent radiocontrast-induced acute renal failure?” Nephrology Dialysis Transplantation, vol. 14, no. 5, pp. 1064–1066, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Mueller, G. Buerkle, H. J. Buettner et al., “Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty,” Archives of Internal Medicine, vol. 162, no. 3, pp. 329–336, 2002. View at Google Scholar · View at Scopus
  10. H. S. Trivedi, H. Moore, S. Nasr et al., “A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity,” Nephron Clinical Practice, vol. 93, no. 1, pp. C29–34, 2003. View at Google Scholar · View at Scopus
  11. B. D. Bader, E. D. Berger, M. B. Heede et al., “What is the best hydration regimen to prevent contrast media-induced nephrotoxicity?” Clinical Nephrology, vol. 62, no. 1, pp. 1–7, 2004. View at Google Scholar · View at Scopus
  12. S. Holt, “Radiocontrast media-induced renal injury: saline is effective in prevention,” Nephron Clinical Practice, vol. 93, no. 1, pp. 5–6, 2003. View at Google Scholar · View at Scopus
  13. C. Mueller, “Prevention of contrast-induced nephropathy with volume supplementation,” Kidney International, no. 100, pp. S16–19, 2006. View at Google Scholar · View at Scopus
  14. D. A. Gonzales, K. J. Norsworthy, S. J. Kern et al., “A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity,” BMC Medicine, vol. 5, article 32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Trivedi, S. Daram, A. Szabo, A. L. Bartorelli, and G. Marenzi, “High-dose N-acetylcysteine for the Prevention of Contrast-induced Nephropathy,” The American Journal of Medicine, vol. 122, no. 9, pp. 874–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Briguori, A. Colombo, A. Violante et al., “Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity,” European Heart Journal, vol. 25, no. 3, pp. 206–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. S. R. Baker, A. Wragg, S. Kumar, R. De Palma, L. R. I. Baker, and C. J. Knight, “A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study,” Journal of the American College of Cardiology, vol. 41, no. 12, pp. 2114–2118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Kelly, B. Dwamena, P. Cronin, S. J. Bernstein, and R. C. Carlos, “Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy,” Annals of Internal Medicine, vol. 148, no. 4, pp. 284–294, 2008. View at Google Scholar · View at Scopus
  19. S. D. Weisbord and P. M. Palevsky, “Strategies for the prevention of contrast-induced acute kidney injury,” Current Opinion in Nephrology and Hypertension, vol. 19, no. 6, pp. 539–549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. J. Merten, W. P. Burgess, L. V. Gray et al., “Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial,” Journal of the American Medical Association, vol. 291, no. 19, pp. 2328–2334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Briguori, F. Airoldi, D. D'Andrea et al., “Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies,” Circulation, vol. 115, pp. 1211–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Ueda, T. Yamada, M. Masuda et al., “Prevention of contrast-induced nephropathy by bolus injection of sodium bicarbonate in patients with chronic kidney disease undergoing emergent coronary procedures,” The American Journal of Cardiology, vol. 107, no. 8, pp. 1163–1167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Motohiro, H. Kamihata, S. Tsujimoto et al., “A new protocol using sodium bicarbonate for the prevention of contrast-induced nephropathy in patients undergoing coronary angiography,” The American Journal of Cardiology, vol. 107, no. 11, pp. 1604–1608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Pakfetrat, M. H. Nikoo, L. Malekmakan et al., “A comparison of sodium bicarbonate infusion versus normal saline infusion and its combination with oral acetazolamide for prevention of contrast-induced nephropathy: a randomized, double-blind trial,” International Urology and Nephrology, vol. 41, no. 3, pp. 629–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. S. Brar, A. Y. Shen, M. B. Jorgensen et al., “Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1038–1046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Adolph, B. Holdt-Lehmann, T. Chatterjee et al., “Renal insufficiency following radiocontrast exposure trial (REINFORCE): a randomized comparison of sodium bicarbonate versus sodium chloride hydration for the prevention of contrast-induced nephropathy,” Coronary Artery Disease, vol. 19, no. 6, pp. 413–419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Vasheghani-Farahani, G. Sadigh, S. E. Kassaian et al., “Sodium bicarbonate plus isotonic saline versus saline for prevention of contrast-induced nephropathy in patients undergoing coronary angiography: a randomized controlled trial,” The American Journal of Kidney Diseases, vol. 54, no. 4, pp. 610–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Zoungas, T. Ninomiya, R. Huxley et al., “Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy,” Annals of Internal Medicine, vol. 151, no. 9, pp. 631–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Kunadian, A. Zaman, I. Spyridopoulos, and W. Qiu, “Sodium bicarbonate for the prevention of contrast induced nephropathy: a meta-analysis of published clinical trials,” European Journal of Radiology, vol. 79, no. 1, pp. 48–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. S. Soni, C. Ronco, N. Katz, and D. N. Cruz, “Early diagnosis of acute kidney injury: the promise of novel biomarkers,” Blood Purification, vol. 28, no. 3, pp. 165–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Mishra, M. A. Qing, A. Prada et al., “Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2534–2543, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Hirsch, C. Dent, H. Pfriem et al., “NGAL is an early predictive biomarker of contrast-induced nephropathy in children,” Pediatric Nephrology, vol. 22, no. 12, pp. 2089–2095, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Ling, N. Zhaohui, H. Ben et al., “Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography,” Nephron Clinical Practice, vol. 108, no. 3, pp. c176–c181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. D. N. Cruz, C. Y. Goh, A. Haase-Fielitz, C. Ronco, and M. Haase, “Early biomarkers of renal injury,” Congestive Heart Failure, vol. 16, no. 1, pp. S25–S31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Malyszko, H. Bachorzewska-Gajewska, B. Poniatowski, J. S. Malyszko, and S. Dobrzycki, “Urinary and serum biomarkers after cardiac catheterization in diabetic patients with stable angina and without severe chronic kidney disease,” Renal Failure, vol. 31, no. 10, pp. 910–919, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Sethi and L. H. Diamond, “Aminoglycoside nephrotoxicity and its predictability,” Nephron, vol. 27, no. 4-5, pp. 265–270, 1981. View at Google Scholar · View at Scopus
  37. G. Roche, B. Brugerolle, J. Straczek et al., “Value of the assay of 4 urinary enzyme activities in the diagnosis of the infectious or toxic (aminoglycosides) origin of a renal disease,” La Revue De MéDecine Interne, vol. 4, pp. 327–334, 1983. View at Google Scholar
  38. H. G. Hartmann, H. E. Braedel, and G. A. Jutzler, “Detection of renal tubular lesions after abdominal aortography and selective renal arteriography by quantitative measurements of brush-border enzymes in the urine,” Nephron, vol. 39, no. 2, pp. 95–101, 1985. View at Google Scholar · View at Scopus
  39. J. Wethuyzen et al., “Urinary protein excretion following coronary angiography using a non-toxic radiocontrast agent,” Annals of Clinical Biochemistry, vol. 33, pp. 349–351, 1996. View at Google Scholar
  40. R. L. Mehta, J. A. Kellum, S. V. Shah et al., “Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury,” Critical Care, vol. 11, no. 2, article R31, 2007. View at Google Scholar · View at Scopus
  41. R. Mehran, E. D. Aymong, E. Nikolsky et al., “A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation,” Journal of the American College of Cardiology, vol. 44, no. 7, pp. 1393–1399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Meier, D. T. Ko, A. Tamura, U. Tamhane, and H. S. Gurm, “Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis,” BMC Medicine, vol. 7, article 23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Maioli, A. Toso, M. Leoncini et al., “Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing Coronary angiography or intervention,” Journal of the American College of Cardiology, vol. 52, no. 8, pp. 599–604, 2008. View at Publisher · View at Google Scholar · View at Scopus